These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 23365869)

  • 41. Analysis of dendritic arbors of native and regenerated ganglion cells in the goldfish retina.
    Cameron DA; Vafai H; White JA
    Vis Neurosci; 1999; 16(2):253-61. PubMed ID: 10367960
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neural activity and branching of embryonic retinal ganglion cell dendrites.
    Hocking JC; Pollock NS; Johnston J; Wilson RJ; Shankar A; McFarlane S
    Mech Dev; 2012 Jul; 129(5-8):125-35. PubMed ID: 22587886
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A bidomain model of epiretinal stimulation.
    Dokos S; Suaning GJ; Lovell NH
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):137-46. PubMed ID: 16003891
    [TBL] [Abstract][Full Text] [Related]  

  • 44. How the retinal network reacts to epiretinal stimulation to form the prosthetic visual input to the cortex.
    Cottaris NP; Elfar SD
    J Neural Eng; 2005 Mar; 2(1):S74-90. PubMed ID: 15876658
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A 3D-continuum bidomain model of retinal electrical stimulation using an anatomically detailed mesh.
    Shalbaf F; Du P; Lovell NH; Dokos S; Vaghefi E
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2291-4. PubMed ID: 26736750
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modelling the electrotonic structure of starburst amacrine cells in the rabbit retina: a functional interpretation of dendritic morphology.
    Poznanski RR
    Bull Math Biol; 1992 Nov; 54(6):905-28. PubMed ID: 1515871
    [TBL] [Abstract][Full Text] [Related]  

  • 47. How voltage-gated ion channels alter the functional properties of ganglion and amacrine cell dendrites.
    Miller RF; Stenback K; Henderson D; Sikora M
    Arch Ital Biol; 2002 Oct; 140(4):347-59. PubMed ID: 12228988
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vitro activation of retinal cells: estimating location of stimulated cell by using a mathematical model.
    Ziv OR; Rizzo JF; Jensen RJ
    J Neural Eng; 2005 Mar; 2(1):S5-S15. PubMed ID: 15876655
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Early neural activity and dendritic growth in turtle retinal ganglion cells.
    Mehta V; Sernagor E
    Eur J Neurosci; 2006 Aug; 24(3):773-86. PubMed ID: 16930407
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Responses of rabbit retinal ganglion cells to subretinal electrical stimulation using a silicon-based microphotodiode array.
    Yang YT; Lin PK; Wan C; Yang WC; Lin LJ; Wu CY; Chiao CC
    Invest Ophthalmol Vis Sci; 2011 Dec; 52(13):9353-61. PubMed ID: 22058338
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Performance optimization of current focusing and virtual electrode strategies in retinal implants.
    Khalili Moghaddam G; Lovell NH; Wilke RG; Suaning GJ; Dokos S
    Comput Methods Programs Biomed; 2014 Nov; 117(2):334-42. PubMed ID: 25023532
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Changing dendritic field size of mouse retinal ganglion cells in early postnatal development.
    Ren L; Liang H; Diao L; He S
    Dev Neurobiol; 2010 May; 70(6):397-407. PubMed ID: 19998271
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Retinal ganglion cell dendritic development and its control. Filling the gaps.
    Wingate RJ
    Mol Neurobiol; 1996 Apr; 12(2):133-44. PubMed ID: 8818147
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pathway-specific maturation, visual deprivation, and development of retinal pathway.
    Xu H; Tian N
    Neuroscientist; 2004 Aug; 10(4):337-46. PubMed ID: 15271261
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impulse encoding across the dendritic morphologies of retinal ganglion cells.
    Sheasby BW; Fohlmeister JF
    J Neurophysiol; 1999 Apr; 81(4):1685-98. PubMed ID: 10200204
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Local and target-derived brain-derived neurotrophic factor exert opposing effects on the dendritic arborization of retinal ganglion cells in vivo.
    Lom B; Cogen J; Sanchez AL; Vu T; Cohen-Cory S
    J Neurosci; 2002 Sep; 22(17):7639-49. PubMed ID: 12196587
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Circuit Mechanisms of a Retinal Ganglion Cell with Stimulus-Dependent Response Latency and Activation Beyond Its Dendrites.
    Mani A; Schwartz GW
    Curr Biol; 2017 Feb; 27(4):471-482. PubMed ID: 28132812
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Retinal ganglion cell morphology in the frog, Rana pipiens.
    Frank BD; Hollyfield JG
    J Comp Neurol; 1987 Dec; 266(3):413-34. PubMed ID: 3500969
    [TBL] [Abstract][Full Text] [Related]  

  • 59. HiPSC-derived retinal ganglion cells grow dendritic arbors and functional axons on a tissue-engineered scaffold.
    Li K; Zhong X; Yang S; Luo Z; Li K; Liu Y; Cai S; Gu H; Lu S; Zhang H; Wei Y; Zhuang J; Zhuo Y; Fan Z; Ge J
    Acta Biomater; 2017 May; 54():117-127. PubMed ID: 28216299
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Retinal ganglion cell dendrites undergo a visual activity-dependent redistribution after eye opening.
    Xu HP; Tian N
    J Comp Neurol; 2007 Jul; 503(2):244-59. PubMed ID: 17492624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.