These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23365890)

  • 1. Transformative Reality: improving bionic vision with robotic sensing.
    Lui WL; Browne D; Kleeman L; Drummond T; Li WH
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():304-7. PubMed ID: 23365890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CYCLOPS: A mobile robotic platform for testing and validating image processing and autonomous navigation algorithms in support of artificial vision prostheses.
    Fink W; Tarbell MA
    Comput Methods Programs Biomed; 2009 Dec; 96(3):226-33. PubMed ID: 19651459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simplification of Visual Rendering in Simulated Prosthetic Vision Facilitates Navigation.
    Vergnieux V; Macé MJ; Jouffrais C
    Artif Organs; 2017 Sep; 41(9):852-861. PubMed ID: 28321887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A salient information processing system for bionic eye with application to obstacle avoidance.
    Stacey A; Li Y; Barnes N
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5116-9. PubMed ID: 22255490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulated Prosthetic Vision: The Benefits of Computer-Based Object Recognition and Localization.
    Macé MJ; Guivarch V; Denis G; Jouffrais C
    Artif Organs; 2015 Jul; 39(7):E102-13. PubMed ID: 25900238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image Processing Strategies Based on a Visual Saliency Model for Object Recognition Under Simulated Prosthetic Vision.
    Wang J; Li H; Fu W; Chen Y; Li L; Lyu Q; Han T; Chai X
    Artif Organs; 2016 Jan; 40(1):94-100. PubMed ID: 25981202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image processing strategies based on saliency segmentation for object recognition under simulated prosthetic vision.
    Li H; Su X; Wang J; Kan H; Han T; Zeng Y; Chai X
    Artif Intell Med; 2018 Jan; 84():64-78. PubMed ID: 29129481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Text image processing for visual prostheses.
    Wang S; Li Y; Barnes N
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2977-80. PubMed ID: 23366550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulating prosthetic vision: Optimizing the information content of a limited visual display.
    van Rheede JJ; Kennard C; Hicks SL
    J Vis; 2010 Dec; 10(14):. PubMed ID: 21191130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of field of view in visual prostheses design: Analysis with a VR system.
    Sanchez-Garcia M; Martinez-Cantin R; Bermudez-Cameo J; Guerrero JJ
    J Neural Eng; 2020 Oct; 17(5):056002. PubMed ID: 32947270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semantic and structural image segmentation for prosthetic vision.
    Sanchez-Garcia M; Martinez-Cantin R; Guerrero JJ
    PLoS One; 2020; 15(1):e0227677. PubMed ID: 31995568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assistive peripheral phosphene arrays deliver advantages in obstacle avoidance in simulated end-stage retinitis pigmentosa: a virtual-reality study.
    Zapf MP; Boon MY; Lovell NH; Suaning GJ
    J Neural Eng; 2016 Apr; 13(2):026022. PubMed ID: 26902525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis.
    Chader GJ; Weiland J; Humayun MS
    Prog Brain Res; 2009; 175():317-32. PubMed ID: 19660665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substituting depth for intensity and real-time phosphene rendering: visual navigation under low vision conditions.
    Lieby P; Barnes N; McCarthy C; Liu N; Dennett H; Walker JG; Botea V; Scott AF
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8017-20. PubMed ID: 22256201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulated prosthetic vision: improving text accessibility with retinal prostheses.
    Denis G; Jouffrais C; Mailhes C; Mace MJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1719-22. PubMed ID: 25570307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of complex visual tasks using simulated prosthetic vision via augmented-reality glasses.
    Ho E; Boffa J; Palanker D
    J Vis; 2019 Nov; 19(13):22. PubMed ID: 31770773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The application of computer vision to visual prosthesis.
    Wang J; Zhu H; Liu J; Li H; Han Y; Zhou R; Zhang Y
    Artif Organs; 2021 Oct; 45(10):1141-1154. PubMed ID: 34318520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation to Phosphene Parameters Based on Multi-Object Recognition Using Simulated Prosthetic Vision.
    Xia P; Hu J; Peng Y
    Artif Organs; 2015 Dec; 39(12):1038-45. PubMed ID: 25912967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bionic eye review - An update.
    Nowik K; Langwińska-Wośko E; Skopiński P; Nowik KE; Szaflik JP
    J Clin Neurosci; 2020 Aug; 78():8-19. PubMed ID: 32571603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eye Gaze Based 3D Triangulation for Robotic Bionic Eyes.
    Fan D; Liu Y; Chen X; Meng F; Liu X; Ullah Z; Cheng W; Liu Y; Huang Q
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32942655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.