These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 23365892)

  • 1. The uniqueness of the message in a retinal ganglion cell spike train and its implication for retinal prostheses.
    Troy JB; Yrazu FM; Passaglia CL
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():312-3. PubMed ID: 23365892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding visual information from a population of retinal ganglion cells.
    Warland DK; Reinagel P; Meister M
    J Neurophysiol; 1997 Nov; 78(5):2336-50. PubMed ID: 9356386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classifying the motion of visual stimuli from the spike response of a population of retinal ganglion cells.
    Cerquera A; Greschner M; Freund JA
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4082-5. PubMed ID: 19163609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficacy of electrical stimulation of retinal ganglion cells with temporal patterns resembling light-evoked spike trains.
    Wong RC; Garrett DJ; Grayden DB; Ibbotson MR; Cloherty SL
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1707-10. PubMed ID: 25570304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial and temporal correlations of spike trains in frog retinal ganglion cells.
    Liu WZ; Jing W; Li H; Gong HQ; Liang PJ
    J Comput Neurosci; 2011 Jun; 30(3):543-53. PubMed ID: 20865311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-amplitude electrical stimulation can reduce elicited neuronal activity in visual prosthesis.
    Barriga-Rivera A; Guo T; Yang CY; Abed AA; Dokos S; Lovell NH; Morley JW; Suaning GJ
    Sci Rep; 2017 Feb; 7():42682. PubMed ID: 28209965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biologically-inspired image processing in computational retina models.
    Melanitis N; Nikita KS
    Comput Biol Med; 2019 Oct; 113():103399. PubMed ID: 31472425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency of information transmission by retinal ganglion cells.
    Koch K; McLean J; Berry M; Sterling P; Balasubramanian V; Freed MA
    Curr Biol; 2004 Sep; 14(17):1523-30. PubMed ID: 15341738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response variability to high rates of electric stimulation in retinal ganglion cells.
    Cai C; Ren Q; Desai NJ; Rizzo JF; Fried SI
    J Neurophysiol; 2011 Jul; 106(1):153-62. PubMed ID: 21490287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encoding visual information in retinal ganglion cells with prosthetic stimulation.
    Freeman DK; Rizzo JF; Fried SI
    J Neural Eng; 2011 Jun; 8(3):035005. PubMed ID: 21593546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex.
    Van Rullen R; Thorpe SJ
    Neural Comput; 2001 Jun; 13(6):1255-83. PubMed ID: 11387046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple components of ganglion cell desensitization in response to prosthetic stimulation.
    Freeman DK; Fried SI
    J Neural Eng; 2011 Feb; 8(1):016008. PubMed ID: 21248379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multineuronal codes in retinal signaling.
    Meister M
    Proc Natl Acad Sci U S A; 1996 Jan; 93(2):609-14. PubMed ID: 8570603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioural responses to a photovoltaic subretinal prosthesis implanted in non-human primates.
    Prévot PH; Gehere K; Arcizet F; Akolkar H; Khoei MA; Blaize K; Oubari O; Daye P; Lanoë M; Valet M; Dalouz S; Langlois P; Esposito E; Forster V; Dubus E; Wattiez N; Brazhnikova E; Nouvel-Jaillard C; LeMer Y; Demilly J; Fovet CM; Hantraye P; Weissenburger M; Lorach H; Bouillet E; Deterre M; Hornig R; Buc G; Sahel JA; Chenegros G; Pouget P; Benosman R; Picaud S
    Nat Biomed Eng; 2020 Feb; 4(2):172-180. PubMed ID: 31792423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Information processing in the primate retina: circuitry and coding.
    Field GD; Chichilnisky EJ
    Annu Rev Neurosci; 2007; 30():1-30. PubMed ID: 17335403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concerted signaling by retinal ganglion cells.
    Meister M; Lagnado L; Baylor DA
    Science; 1995 Nov; 270(5239):1207-10. PubMed ID: 7502047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual processing: the devil is in the details.
    Neves G; Lagnado L
    Curr Biol; 2000 Dec 14-28; 10(24):R896-8. PubMed ID: 11137024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The potential coding utility of intercell cross-correlations in the retina.
    Levine MW
    Biol Cybern; 2004 Sep; 91(3):182-7. PubMed ID: 15372240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SpikeSEE: An energy-efficient dynamic scenes processing framework for retinal prostheses.
    Wang C; Fang C; Zou Y; Yang J; Sawan M
    Neural Netw; 2023 Jul; 164():357-368. PubMed ID: 37167749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding of retinal ganglion cell spike trains evoked by temporally patterned electrical stimulation.
    Ryu SB; Ye JH; Goo YS; Kim CH; Kim KH
    Brain Res; 2010 Aug; 1348():71-83. PubMed ID: 20599822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.