BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 23366043)

  • 1. Smooth path planning for a biologically-inspired neurosurgical probe.
    Bano S; Ko SY; Rodriguez y Baena F
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():920-3. PubMed ID: 23366043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D path planning for flexible needle steering in neurosurgery.
    Hong A; Boehler Q; Moser R; Zemmar A; Stieglitz L; Nelson BJ
    Int J Med Robot; 2019 Aug; 15(4):e1998. PubMed ID: 30945791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Adaptive Hermite Fractal Tree (AHFT): a novel surgical 3D path planning approach with curvature and heading constraints.
    Pinzi M; Galvan S; Rodriguez Y Baena F
    Int J Comput Assist Radiol Surg; 2019 Apr; 14(4):659-670. PubMed ID: 30790172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward a miniaturized needle steering system with path planning for obstacle avoidance.
    Ko SY; Rodriguez y Baena F
    IEEE Trans Biomed Eng; 2013 Apr; 60(4):910-7. PubMed ID: 23193445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inverse Reinforcement Learning Intra-Operative Path Planning for Steerable Needle.
    Segato A; Marzo MD; Zucchelli S; Galvan S; Secoli R; De Momi E
    IEEE Trans Biomed Eng; 2022 Jun; 69(6):1995-2005. PubMed ID: 34882540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Dynamic Path-Planning Method for Obstacle Avoidance Based on the Driving Safety Field.
    Liu K; Wang H; Fu Y; Wen G; Wang B
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic Control of a Flexible Needle in Neurosurgery.
    Hong A; Petruska AJ; Zemmar A; Nelson BJ
    IEEE Trans Biomed Eng; 2021 Feb; 68(2):616-627. PubMed ID: 32746060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward a preoperative planning tool for brain tumor resection therapies.
    Coffey AM; Miga MI; Chen I; Thompson RC
    Int J Comput Assist Radiol Surg; 2013 Jan; 8(1):87-97. PubMed ID: 22622877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dex-ray: augmented reality neurosurgical navigation with a handheld video probe.
    Kockro RA; Tsai YT; Ng I; Hwang P; Zhu C; Agusanto K; Hong LX; Serra L
    Neurosurgery; 2009 Oct; 65(4):795-807; discussion 807-8. PubMed ID: 19834386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biologically inspired microtexturing: investigation into the surface topography of next-generation neurosurgical probes.
    Frasson L; Parittotokkaporn T; Schneider A; Davies BL; Vincent JV; Huq SE; Degenaar P; Baena FM
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5611-4. PubMed ID: 19163989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental evaluation of a novel steerable probe with a programmable bevel tip inspired by nature.
    Frasson L; Ferroni F; Ko SY; Dogangil G; Rodriguez Y Baena F
    J Robot Surg; 2012 Sep; 6(3):189-97. PubMed ID: 27638271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new surgical path planning framework for neurosurgery.
    Kurt Pehlivanoğlu M; Ay EC; Eker AG; Albayrak NB; Duru N; Mutluer AS; Dündar TT; Doğan İ
    Int J Med Robot; 2023 Sep; ():e2576. PubMed ID: 37773772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of a novel path planner for stereotactic neurosurgical interventions-A retrospective clinical study.
    Wankhede A; Madiraju L; Siampli E; Fischer E; Cleary K; Oluigbo C; Monfaredi R
    Int J Med Robot; 2022 Dec; 18(6):e2458. PubMed ID: 36109343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robotically Steered Needles: A Survey of Neurosurgical Applications and Technical Innovations.
    Audette MA; Bordas SPA; Blatt JE
    Robot Surg; 2020; 7():1-23. PubMed ID: 32258180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human-robot collaborated path planning for bevel-tip needle steering in simulated human environment.
    Jing Xiong ; Zeyang Xia ; Yangzhou Gan
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5672-5675. PubMed ID: 28269542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Path Replanning for Orientation-Constrained Needle Steering.
    Pinzi M; Watts T; Secoli R; Galvan S; Baena FRY
    IEEE Trans Biomed Eng; 2021 May; 68(5):1459-1466. PubMed ID: 33606622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screw-Based Motion Planning for Bevel-Tip Flexible Needles in 3D Environments with Obstacles.
    Duindam V; Alterovitz R; Sastry S; Goldberg K
    IEEE Int Conf Robot Autom; 2008 May; ():2483-2488. PubMed ID: 22146911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible needle steering for percutaneous therapies.
    Glozman D; Shoham M
    Comput Aided Surg; 2006 Jul; 11(4):194-201. PubMed ID: 17060077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A survey on puncture models and path planning algorithms of bevel-tipped flexible needles.
    Huang Y; Yu L; Zhang F
    Heliyon; 2024 Feb; 10(3):e25002. PubMed ID: 38322890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional neuronavigation combined with intra-operative 3D ultrasound: initial experiences during surgical resections close to eloquent brain areas and future directions in automatic brain shift compensation of preoperative data.
    Rasmussen IA; Lindseth F; Rygh OM; Berntsen EM; Selbekk T; Xu J; Nagelhus Hernes TA; Harg E; Håberg A; Unsgaard G
    Acta Neurochir (Wien); 2007; 149(4):365-78. PubMed ID: 17308976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.