These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 23366140)

  • 1. Parameter estimation for maximizing controllability of linear brain-machine interfaces.
    Gowda S; Orsborn AL; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1314-7. PubMed ID: 23366140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor cortical decoding performance depends on controlled system order.
    Matlack C; Haddock A; Moritz CT; Chizeck HJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2553-6. PubMed ID: 25570511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding continuous limb movements from high-density epidural electrode arrays using custom spatial filters.
    Marathe AR; Taylor DM
    J Neural Eng; 2013 Jun; 10(3):036015. PubMed ID: 23611833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering.
    Shanechi MM; Orsborn AL; Carmena JM
    PLoS Comput Biol; 2016 Apr; 12(4):e1004730. PubMed ID: 27035820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superior arm-movement decoding from cortex with a new, unsupervised-learning algorithm.
    Makin JG; O'Doherty JE; Cardoso MMB; Sabes PN
    J Neural Eng; 2018 Apr; 15(2):026010. PubMed ID: 29192609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical Control of Virtual Self-Motion Using Task-Specific Subspaces.
    Schroeder KE; Perkins SM; Wang Q; Churchland MM
    J Neurosci; 2022 Jan; 42(2):220-239. PubMed ID: 34716229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing dynamical properties of brain-machine interfaces to optimize task-specific performance.
    Gowda S; Orsborn AL; Overduin SA; Moorman HG; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):911-20. PubMed ID: 24760941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive decoding for brain-machine interfaces through Bayesian parameter updates.
    Li Z; O'Doherty JE; Lebedev MA; Nicolelis MA
    Neural Comput; 2011 Dec; 23(12):3162-204. PubMed ID: 21919788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A brain machine interface control algorithm designed from a feedback control perspective.
    Gilja V; Nuyujukian P; Chestek CA; Cunningham JP; Yu BM; Fan JM; Ryu SI; Shenoy KV
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1318-22. PubMed ID: 23366141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance brain-machine interface enabled by an adaptive optimal feedback-controlled point process decoder.
    Shanechi MM; Orsborn A; Moorman H; Gowda S; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6493-6. PubMed ID: 25571483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auto-deleting brain machine interface: Error detection using spiking neural activity in the motor cortex.
    Even-Chen N; Stavisky SD; Kao JC; Ryu SI; Shenoy KV
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():71-5. PubMed ID: 26736203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring time-scales of closed-loop decoder adaptation in brain-machine interfaces.
    Orsborn AL; Dangi S; Moorman HG; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5436-9. PubMed ID: 22255567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous closed-loop decoder adaptation with a recursive maximum likelihood algorithm allows for rapid performance acquisition in brain-machine interfaces.
    Dangi S; Gowda S; Moorman HG; Orsborn AL; So K; Shanechi M; Carmena JM
    Neural Comput; 2014 Sep; 26(9):1811-39. PubMed ID: 24922501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leveraging neural dynamics to extend functional lifetime of brain-machine interfaces.
    Kao JC; Ryu SI; Shenoy KV
    Sci Rep; 2017 Aug; 7(1):7395. PubMed ID: 28784984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term, stable behavior of local field potentials during brain machine interface use.
    Scheid MR; Flint RD; Wright ZA; Slutzky MW
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():307-10. PubMed ID: 24109685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high performing brain-machine interface driven by low-frequency local field potentials alone and together with spikes.
    Stavisky SD; Kao JC; Nuyujukian P; Ryu SI; Shenoy KV
    J Neural Eng; 2015 Jun; 12(3):036009. PubMed ID: 25946198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmenting intracortical brain-machine interface with neurally driven error detectors.
    Even-Chen N; Stavisky SD; Kao JC; Ryu SI; Shenoy KV
    J Neural Eng; 2017 Dec; 14(6):066007. PubMed ID: 29130452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning Neural Encoders for Motor Cortex.
    Liang KF; Kao JC
    IEEE Trans Biomed Eng; 2020 Aug; 67(8):2145-2158. PubMed ID: 31765302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recasting brain-machine interface design from a physical control system perspective.
    Zhang Y; Chase SM
    J Comput Neurosci; 2015 Oct; 39(2):107-18. PubMed ID: 26142906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Likelihood Gradient Ascent (LGA): a closed-loop decoder adaptation algorithm for brain-machine interfaces.
    Dangi S; Gowda S; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2768-71. PubMed ID: 24110301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.