BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 23366142)

  • 1. Estimation of a mean template from spike-train data.
    Wu W; Srivastava A
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1323-6. PubMed ID: 23366142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating summary statistics in the spike-train space.
    Wu W; Srivastava A
    J Comput Neurosci; 2013 Jun; 34(3):391-410. PubMed ID: 23053864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An information-geometric framework for statistical inferences in the neural spike train space.
    Wu W; Srivastava A
    J Comput Neurosci; 2011 Nov; 31(3):725-48. PubMed ID: 21584775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards statistical summaries of spike train data.
    Wu W; Srivastava A
    J Neurosci Methods; 2011 Jan; 195(1):107-10. PubMed ID: 21115044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavelet-based processing of neuronal spike trains prior to discriminant analysis.
    Laubach M
    J Neurosci Methods; 2004 Apr; 134(2):159-68. PubMed ID: 15003382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyzing multiple spike trains with nonparametric Granger causality.
    Nedungadi AG; Rangarajan G; Jain N; Ding M
    J Comput Neurosci; 2009 Aug; 27(1):55-64. PubMed ID: 19137420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential Monte Carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces.
    Wang Y; Paiva AR; Príncipe JC; Sanchez JC
    Neural Comput; 2009 Oct; 21(10):2894-930. PubMed ID: 19548797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods for estimating neural firing rates, and their application to brain-machine interfaces.
    Cunningham JP; Gilja V; Ryu SI; Shenoy KV
    Neural Netw; 2009 Nov; 22(9):1235-46. PubMed ID: 19349143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains.
    Pillow JW; Ahmadian Y; Paninski L
    Neural Comput; 2011 Jan; 23(1):1-45. PubMed ID: 20964538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of spike train decoder under spike detection and classification errors using support vector machine.
    Kim KH; Kim SS; Kim SJ
    Med Biol Eng Comput; 2006 Mar; 44(1-2):124-30. PubMed ID: 16929930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spike train decoding without spike sorting.
    Ventura V
    Neural Comput; 2008 Apr; 20(4):923-63. PubMed ID: 18085990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reproducing kernel Hilbert space framework for spike train signal processing.
    Paiva AR; Park I; Príncipe JC
    Neural Comput; 2009 Feb; 21(2):424-49. PubMed ID: 19431265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task.
    Torre E; Quaglio P; Denker M; Brochier T; Riehle A; Grün S
    J Neurosci; 2016 Aug; 36(32):8329-40. PubMed ID: 27511007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spikernels: predicting arm movements by embedding population spike rate patterns in inner-product spaces.
    Shpigelman L; Singer Y; Paz R; Vaadia E
    Neural Comput; 2005 Mar; 17(3):671-90. PubMed ID: 15802010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of compressed sensing of motor cortical activity on spike train decoding in Brain Machine Interfaces.
    Aghagolzadeh M; Shetliffe M; Oweiss KG
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5302-5. PubMed ID: 19163914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An overview of Bayesian methods for neural spike train analysis.
    Chen Z
    Comput Intell Neurosci; 2013; 2013():251905. PubMed ID: 24348527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian population decoding of motor cortical activity using a Kalman filter.
    Wu W; Gao Y; Bienenstock E; Donoghue JP; Black MJ
    Neural Comput; 2006 Jan; 18(1):80-118. PubMed ID: 16354382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of time-varying neural dynamics from spike train data using multiwavelet basis functions.
    Xu S; Li Y; Guo Q; Yang XF; Chan RHM
    J Neurosci Methods; 2017 Feb; 278():46-56. PubMed ID: 28062244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of spatiotemporally correlated spike trains and local field potentials using a multivariate autoregressive process.
    Gutnisky DA; Josić K
    J Neurophysiol; 2010 May; 103(5):2912-30. PubMed ID: 20032244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of time-dependent changes in the irregularity of neural spiking.
    Davies RM; Gerstein GL; Baker SN
    J Neurophysiol; 2006 Aug; 96(2):906-18. PubMed ID: 16554511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.