These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 23366156)
1. Antimicrobial properties of biodegradable magnesium for next generation ureteral stent applications. Lock JY; Draganov M; Whall A; Dhillon S; Upadhyayula S; Vullev VI; Liu H Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1378-81. PubMed ID: 23366156 [TBL] [Abstract][Full Text] [Related]
2. Degradation and antibacterial properties of magnesium alloys in artificial urine for potential resorbable ureteral stent applications. Lock JY; Wyatt E; Upadhyayula S; Whall A; Nuñez V; Vullev VI; Liu H J Biomed Mater Res A; 2014 Mar; 102(3):781-92. PubMed ID: 23564415 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of a novel biodegradable ureteral stent produced from polyurethane and magnesium alloys. Jin L; Yao L; Yuan F; Dai G; Xue B J Biomed Mater Res B Appl Biomater; 2021 May; 109(5):665-672. PubMed ID: 32929829 [TBL] [Abstract][Full Text] [Related]
4. Biodegradable tocopherol acetate as a drug carrier to prevent ureteral stent-associated infection. Elayarajah ; Rajendran R; Venkatrajah ; Sreekumar S; Sudhakar A; Janiga ; Sreekumar S Pak J Biol Sci; 2011 Mar; 14(5):336-43. PubMed ID: 21874825 [TBL] [Abstract][Full Text] [Related]
5. Immersed multilayer biodegradable ureteral stent with reformed biodegradation: An in vitro experiment. Yang G; Xie H; Huang Y; Lv Y; Zhang M; Shang Y; Zhou J; Wang L; Wang JY; Chen F J Biomater Appl; 2017 Mar; 31(8):1235-1244. PubMed ID: 28274192 [TBL] [Abstract][Full Text] [Related]
6. Papain immobilized polyurethane as an ureteral stent material. Maria Manohar C; Doble M J Biomed Mater Res B Appl Biomater; 2016 May; 104(4):723-31. PubMed ID: 26853541 [TBL] [Abstract][Full Text] [Related]
7. Polyurethane internal ureteral stents in treatment of stone patients: morbidity related to indwelling times. el-Faqih SR; Shamsuddin AB; Chakrabarti A; Atassi R; Kardar AH; Osman MK; Husain I J Urol; 1991 Dec; 146(6):1487-91. PubMed ID: 1942324 [TBL] [Abstract][Full Text] [Related]
8. Characterization and assessment of a novel poly(ethylene oxide)/polyurethane composite hydrogel (Aquavene) as a ureteral stent biomaterial. Gorman SP; Tunney MM; Keane PF; Van Bladel K; Bley B J Biomed Mater Res; 1998 Mar; 39(4):642-9. PubMed ID: 9492227 [TBL] [Abstract][Full Text] [Related]
9. Ureteral Stents Harbor Complex Biofilms With Rich Microbiome-Metabolite Interactions. Werneburg GT; Hettel D; Lundy SD; Adler A; De S; Mukherjee SD; Rackley RR; Shoskes DA; Miller AW J Urol; 2023 May; 209(5):950-962. PubMed ID: 36724057 [TBL] [Abstract][Full Text] [Related]
10. Application of Novel 3,4-Dihydroxyphenylalanine-Containing Antimicrobial Polymers for the Prevention of Uropathogen Attachment to Urinary Biomaterials. MacPhee RA; Koepsel J; Tailly T; Vangala SK; Brennan L; Cadieux PA; Burton JP; Wattengel C; Razvi H; Dalsin J J Endourol; 2019 Jul; 33(7):590-597. PubMed ID: 31140304 [No Abstract] [Full Text] [Related]
11. Ureteral double-J stents performances toward encrustation after long-term indwelling in a dynamic in vitro model. Cauda V; Chiodoni A; Laurenti M; Canavese G; Tommasi T J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2244-2253. PubMed ID: 27459232 [TBL] [Abstract][Full Text] [Related]
12. Assessment of encrustation and physicochemical properties of poly(lactide-glycolide) - Papaverine hydrochloride coating on ureteral double-J stents after long-term flow of artificial urine. Antonowicz M; Szewczenko J; Kajzer A; Kajzer W; Jaworska J; Jelonek K; Karpeta-Jarząbek P; Bryniarski P; Krzywiecki M; Grządziel L; Swinarew AS; Nakonieczny DS; Kasperczyk J J Biomed Mater Res B Appl Biomater; 2022 Feb; 110(2):367-381. PubMed ID: 34302425 [TBL] [Abstract][Full Text] [Related]
14. Prospects for the research and application of biodegradable ureteral stents: from bench to bedside. Wang L; Yang G; Xie H; Chen F J Biomater Sci Polym Ed; 2018 Oct; 29(14):1657-1666. PubMed ID: 30141744 [TBL] [Abstract][Full Text] [Related]
15. Responses of human urothelial cells to magnesium-zinc-strontium alloys and associated insoluble degradation products for urological stent applications. Tian Q; Zhang C; Deo M; Rivera-Castaneda L; Masoudipour N; Guan R; Liu H Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():248-262. PubMed ID: 30606530 [TBL] [Abstract][Full Text] [Related]
16. Encrustations on ureteral stents from patients without urinary tract infection reveal distinct urotypes and a low bacterial load. Buhmann MT; Abt D; Nolte O; Neu TR; Strempel S; Albrich WC; Betschart P; Zumstein V; Neels A; Maniura-Weber K; Ren Q Microbiome; 2019 Apr; 7(1):60. PubMed ID: 30981280 [TBL] [Abstract][Full Text] [Related]
18. Bacterial biofilm formation, encrustation, and antibiotic adsorption to ureteral stents indwelling in humans. Wollin TA; Tieszer C; Riddell JV; Denstedt JD; Reid G J Endourol; 1998 Apr; 12(2):101-11. PubMed ID: 9607434 [TBL] [Abstract][Full Text] [Related]
19. Designing of dynamic polyethyleneimine (PEI) brushes on polyurethane (PU) ureteral stents to prevent infections. Gultekinoglu M; Tunc Sarisozen Y; Erdogdu C; Sagiroglu M; Aksoy EA; Oh YJ; Hinterdorfer P; Ulubayram K Acta Biomater; 2015 Jul; 21():44-54. PubMed ID: 25848724 [TBL] [Abstract][Full Text] [Related]
20. Investigation of a novel gradient degradable ureteral stent in a beagle dog model. Jin L; Yao L; Zhou Y; Dai G; Zhang W; Xue B J Biomater Appl; 2018 Sep; 33(3):466-473. PubMed ID: 30089434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]