BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 23366162)

  • 1. Force sensing micro-forceps for robot assisted retinal surgery.
    Kuru I; Gonenc B; Balicki M; Handa J; Gehlbach P; Taylor RH; Iordachita I
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1401-4. PubMed ID: 23366162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of 3-DOF force sensing micro-forceps for robot assisted vitreoretinal surgery.
    Gonenc B; Handa J; Gehlbach P; Taylor RH; Iordachita I
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5686-9. PubMed ID: 24111028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperative robot assistant for retinal microsurgery.
    Fleming I; Balicki M; Koo J; Iordachita I; Mitchell B; Handa J; Hager G; Taylor R
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):543-50. PubMed ID: 18982647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-force sensing in robot assisted membrane peeling for vitreoretinal surgery.
    Balicki M; Uneri A; Iordachita I; Handa J; Gehlbach P; Taylor R
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):303-10. PubMed ID: 20879413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A force-sensing microsurgical instrument that detects forces below human tactile sensation.
    Sunshine S; Balicki M; He X; Olds K; Kang JU; Gehlbach P; Taylor R; Iordachita I; Handa JT
    Retina; 2013 Jan; 33(1):200-6. PubMed ID: 22810149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a Micro-Force Sensing Handheld Robot for Vitreoretinal Surgery.
    Gonenc B; Balicki MA; Handa J; Gehlbach P; Riviere CN; Taylor RH; Iordachita I
    Rep U S; 2012 Dec; 2012():4125-4130. PubMed ID: 23378934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human eye phantom for developing computer and robot-assisted epiretinal membrane peeling.
    Gupta A; Gonenc B; Balicki M; Olds K; Handa J; Gehlbach P; Taylor RH; Iordachita I
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6864-7. PubMed ID: 25571573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motorized Force-Sensing Micro-Forceps with Tremor Cancelling and Controlled Micro-Vibrations for Easier Membrane Peeling.
    Gonenc B; Gehlbach P; Handa J; Taylor RH; Iordachita I
    Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron; 2014 Aug; 2014():244-251. PubMed ID: 25544965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Swept source optical coherence tomography based smart handheld vitreoretinal microsurgical tool for tremor suppression.
    Song C; Gehlbach PL; Kang JU
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1405-8. PubMed ID: 23366163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward robotically assisted membrane peeling with 3-DOF distal force sensing in retinal microsurgery.
    He X; Gehlbach P; Handa J; Taylor R; Iordachita I
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6859-63. PubMed ID: 25571572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A parallel robot to assist vitreoretinal surgery.
    Nakano T; Sugita N; Ueta T; Tamaki Y; Mitsuishi M
    Int J Comput Assist Radiol Surg; 2009 Nov; 4(6):517-26. PubMed ID: 20033328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FBG-based sensorized light pipe for robotic intraocular illumination facilitates bimanual retinal microsurgery.
    Horise Y; He X; Gehlbach P; Taylor R; Iordachita I
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():13-6. PubMed ID: 26736189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 'The Microhand': a new concept of micro-forceps for ocular robotic surgery.
    Hubschman JP; Bourges JL; Choi W; Mozayan A; Tsirbas A; Kim CJ; Schwartz SD
    Eye (Lond); 2010 Feb; 24(2):364-7. PubMed ID: 19300461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microsurgical robotic system for vitreoretinal surgery.
    Ida Y; Sugita N; Ueta T; Tamaki Y; Tanimoto K; Mitsuishi M
    Int J Comput Assist Radiol Surg; 2012 Jan; 7(1):27-34. PubMed ID: 21573828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Safe Tissue Manipulation in Retinal Microsurgery via Motorized Instruments with Force Sensing.
    Gonenc B; Gehlbach P; Taylor RH; Iordachita I
    Proc IEEE Sens; 2017; 2017():. PubMed ID: 29805723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sub-millimetric, 0.25 mN resolution fully integrated fiber-optic force-sensing tool for retinal microsurgery.
    Iordachita I; Sun Z; Balicki M; Kang JU; Phee SJ; Handa J; Gehlbach P; Taylor R
    Int J Comput Assist Radiol Surg; 2009 Jun; 4(4):383-90. PubMed ID: 20033585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual tool for bilaterally controlled forceps robot--for minimally invasive surgery.
    Abeykoon AM; Ohnishi K
    Int J Med Robot; 2007 Sep; 3(3):271-80. PubMed ID: 17729375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Micro-Vibratory Modulation during Robot-Assisted Membrane Peeling.
    Gonenc B; Gehlbach P; Taylor RH; Iordachita I
    Rep U S; 2015; 2015():3811-3816. PubMed ID: 27110431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contact force measurement of instruments for force-feedback on a surgical robot: acceleration force cancellations based on acceleration sensor readings.
    Shimachi S; Kameyama F; Hakozaki Y; Fujiwara Y
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):97-104. PubMed ID: 16685948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3-DOF Force-Sensing Micro-Forceps for Robot-Assisted Membrane Peeling: Intrinsic Actuation Force Modeling.
    Gao A; Gonenc B; Guo J; Liu H; Gehlbach P; Iordachita I
    Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron; 2016 Jun; 2016():489-494. PubMed ID: 29445564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.