These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 23366168)
21. Level-set based automatic cup-to-disc ratio determination using retinal fundus images in ARGALI. Wong DK; Liu J; Lim JH; Jia X; Yin F; Li H; Wong TY Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2266-9. PubMed ID: 19163151 [TBL] [Abstract][Full Text] [Related]
22. Learning-based approach for the automatic detection of the optic disc in digital retinal fundus photographs. Wong DK; Liu J; Tan NM; Yin F; Lee BH; Wong TY Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5355-8. PubMed ID: 21096259 [TBL] [Abstract][Full Text] [Related]
23. Patch-Based Output Space Adversarial Learning for Joint Optic Disc and Cup Segmentation. Wang S; Yu L; Yang X; Fu CW; Heng PA IEEE Trans Med Imaging; 2019 Nov; 38(11):2485-2495. PubMed ID: 30794170 [TBL] [Abstract][Full Text] [Related]
24. Application of vascular bundle displacement in the optic disc for glaucoma detection using fundus images. Fuente-Arriaga JA; Felipe-Riverón EM; Garduño-Calderón E Comput Biol Med; 2014 Apr; 47():27-35. PubMed ID: 24530536 [TBL] [Abstract][Full Text] [Related]
25. ORIGA(-light): an online retinal fundus image database for glaucoma analysis and research. Zhang Z; Yin FS; Liu J; Wong WK; Tan NM; Lee BH; Cheng J; Wong TY Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3065-8. PubMed ID: 21095735 [TBL] [Abstract][Full Text] [Related]
26. A Unified Optic Nerve Head and Optic Cup Segmentation Using Unsupervised Neural Networks for Glaucoma Screening. Ghassabi Z; Shanbehzadeh J; Nouri-Mahdavi K Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5942-5945. PubMed ID: 30441689 [TBL] [Abstract][Full Text] [Related]
27. WGAN domain adaptation for the joint optic disc-and-cup segmentation in fundus images. Kadambi S; Wang Z; Xing E Int J Comput Assist Radiol Surg; 2020 Jul; 15(7):1205-1213. PubMed ID: 32445127 [TBL] [Abstract][Full Text] [Related]
28. Joint optic disc and cup segmentation based on densely connected depthwise separable convolution deep network. Liu B; Pan D; Song H BMC Med Imaging; 2021 Jan; 21(1):14. PubMed ID: 33509106 [TBL] [Abstract][Full Text] [Related]
29. Automated localization of retinal features. Sekhar S; Abd El-Samie FE; Yu P; Al-Nuaimy W; Nandi AK Appl Opt; 2011 Jul; 50(19):3064-75. PubMed ID: 21743504 [TBL] [Abstract][Full Text] [Related]
30. An Efficient Hierarchical Optic Disc and Cup Segmentation Network Combined with Multi-task Learning and Adversarial Learning. Wang Y; Yu X; Wu C J Digit Imaging; 2022 Jun; 35(3):638-653. PubMed ID: 35212860 [TBL] [Abstract][Full Text] [Related]
31. Optic Disc and Cup Segmentation in Retinal Images for Glaucoma Diagnosis by Locally Statistical Active Contour Model with Structure Prior. Zhou W; Yi Y; Gao Y; Dai J Comput Math Methods Med; 2019; 2019():8973287. PubMed ID: 31827591 [TBL] [Abstract][Full Text] [Related]
32. A novel lightweight deep learning approach for simultaneous optic cup and optic disc segmentation in glaucoma detection. Song Y; Zhang W; Zhang Y Math Biosci Eng; 2024 Mar; 21(4):5092-5117. PubMed ID: 38872528 [TBL] [Abstract][Full Text] [Related]
33. C2FTFNet: Coarse-to-fine transformer network for joint optic disc and cup segmentation. Yi Y; Jiang Y; Zhou B; Zhang N; Dai J; Huang X; Zeng Q; Zhou W Comput Biol Med; 2023 Sep; 164():107215. PubMed ID: 37481947 [TBL] [Abstract][Full Text] [Related]
34. Identifying the Edges of the Optic Cup and the Optic Disc in Glaucoma Patients by Segmentation. Tadisetty S; Chodavarapu R; Jin R; Clements RJ; Yu M Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430580 [TBL] [Abstract][Full Text] [Related]
35. Segmentation of the blood vessels and optic disk in retinal images. Salazar-Gonzalez A; Kaba D; Li Y; Liu X IEEE J Biomed Health Inform; 2014 Nov; 18(6):1874-86. PubMed ID: 25265617 [TBL] [Abstract][Full Text] [Related]
36. The region of interest localization for glaucoma analysis from retinal fundus image using deep learning. Mitra A; Banerjee PS; Roy S; Roy S; Setua SK Comput Methods Programs Biomed; 2018 Oct; 165():25-35. PubMed ID: 30337079 [TBL] [Abstract][Full Text] [Related]
37. An adaptive threshold based image processing technique for improved glaucoma detection and classification. Issac A; Partha Sarathi M; Dutta MK Comput Methods Programs Biomed; 2015 Nov; 122(2):229-44. PubMed ID: 26321351 [TBL] [Abstract][Full Text] [Related]
38. Convex hull based neuro-retinal optic cup ellipse optimization in glaucoma diagnosis. Zhang Z; Liu J; Cherian NS; Sun Y; Lim JH; Wong WK; Tan NM; Lu S; Li H; Wong TY Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1441-4. PubMed ID: 19963748 [TBL] [Abstract][Full Text] [Related]
39. Sparse dissimilarity-constrained coding for glaucoma screening. Cheng J; Yin F; Wong DW; Tao D; Liu J IEEE Trans Biomed Eng; 2015 May; 62(5):1395-403. PubMed ID: 25585408 [TBL] [Abstract][Full Text] [Related]
40. State-of-the-Art Techniques in Optic Cup and Disc Localization for Glaucoma Diagnosis: Research Results and Issues. Balasubramanian K; Ananthamoorthy NP Crit Rev Biomed Eng; 2020; 48(1):63-83. PubMed ID: 32749119 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]