These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23366171)

  • 1. Computer-aided diagnosis of proliferative diabetic retinopathy.
    Oloumi F; Rangayyan RM; Ells AL
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1438-41. PubMed ID: 23366171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer-aided diagnosis of proliferative diabetic retinopathy via modeling of the major temporal arcade in retinal fundus images.
    Oloumi F; Rangayyan RM; Ells AL
    J Digit Imaging; 2013 Dec; 26(6):1124-30. PubMed ID: 23579735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of the changes in the openness of the major temporal arcade in retinal fundus images of preterm infants with plus disease.
    Oloumi F; Rangayyan RM; Ells AL
    Invest Ophthalmol Vis Sci; 2014 Aug; 55(10):6728-35. PubMed ID: 25168897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of the temporal arcade in fundus images of the retina using the Hough transform.
    Oloumi F; Rangayyan RM
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3585-8. PubMed ID: 19965233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer-aided diagnosis of plus disease via measurement of vessel thickness in retinal fundus images of preterm infants.
    Oloumi F; Rangayyan RM; Casti P; Ells AL
    Comput Biol Med; 2015 Nov; 66():316-29. PubMed ID: 26457930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques.
    Akyol K; Şen B; Bayır Ş
    Comput Math Methods Med; 2016; 2016():6814791. PubMed ID: 27110272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optic disc detection and boundary extraction in retinal images.
    Basit A; Fraz MM
    Appl Opt; 2015 Apr; 54(11):3440-7. PubMed ID: 25967336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated lesion detectors in retinal fundus images.
    Figueiredo IN; Kumar S; Oliveira CM; Ramos JD; Engquist B
    Comput Biol Med; 2015 Nov; 66():47-65. PubMed ID: 26378502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated detection of fundus photographic red lesions in diabetic retinopathy.
    Larsen M; Godt J; Larsen N; Lund-Andersen H; Sjølie AK; Agardh E; Kalm H; Grunkin M; Owens DR
    Invest Ophthalmol Vis Sci; 2003 Feb; 44(2):761-6. PubMed ID: 12556411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decision support system for the detection and grading of hard exudates from color fundus photographs.
    Jaafar HF; Nandi AK; Al-Nuaimy W
    J Biomed Opt; 2011 Nov; 16(11):116001. PubMed ID: 22112106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal images benchmark for the detection of diabetic retinopathy and clinically significant macular edema (CSME).
    Noor-Ul-Huda M; Tehsin S; Ahmed S; Niazi FAK; Murtaza Z
    Biomed Tech (Berl); 2019 May; 64(3):297-307. PubMed ID: 30055096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joslin Vision Network Validation Study: pilot image stabilization phase.
    Aiello LM; Bursell SE; Cavallerano J; Gardner WK; Strong J
    J Am Optom Assoc; 1998 Nov; 69(11):699-710. PubMed ID: 9844322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated localization of retinal features.
    Sekhar S; Abd El-Samie FE; Yu P; Al-Nuaimy W; Nandi AK
    Appl Opt; 2011 Jul; 50(19):3064-75. PubMed ID: 21743504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A deep learning system for detecting diabetic retinopathy across the disease spectrum.
    Dai L; Wu L; Li H; Cai C; Wu Q; Kong H; Liu R; Wang X; Hou X; Liu Y; Long X; Wen Y; Lu L; Shen Y; Chen Y; Shen D; Yang X; Zou H; Sheng B; Jia W
    Nat Commun; 2021 May; 12(1):3242. PubMed ID: 34050158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-space clustering for segmentation of exudates in retinal color photographs.
    Ram K; Sivaswamy J
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1437-40. PubMed ID: 19963747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Red Lesion Detection Using Dynamic Shape Features for Diabetic Retinopathy Screening.
    Seoud L; Hurtut T; Chelbi J; Cheriet F; Langlois JM
    IEEE Trans Med Imaging; 2016 Apr; 35(4):1116-26. PubMed ID: 26701180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Information fusion for diabetic retinopathy CAD in digital color fundus photographs.
    Niemeijer M; Abramoff MD; van Ginneken B
    IEEE Trans Med Imaging; 2009 May; 28(5):775-85. PubMed ID: 19150786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of early diabetic retinopathy by computer processing of fundus images--a preliminary study.
    Gilchrist J
    Ophthalmic Physiol Opt; 1987; 7(4):393-9. PubMed ID: 3454914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of Hard Exudates in Colour Fundus Images Using Fuzzy Support Vector Machine-Based Expert System.
    Jaya T; Dheeba J; Singh NA
    J Digit Imaging; 2015 Dec; 28(6):761-8. PubMed ID: 25822397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Referral system for hard exudates in eye fundus.
    Naqvi SA; Zafar MF; Haq Iu
    Comput Biol Med; 2015 Sep; 64():217-35. PubMed ID: 26231313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.