These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

470 related articles for article (PubMed ID: 23366230)

  • 1. A feed-forward controlled AC-DC boost converter for biomedical implants.
    Jiang H; Lan D; Lin D; Zhang J; Liou S; Shahnasser H; Shen M; Harrison M; Roy S
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1675-8. PubMed ID: 23366230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A low-frequency versatile wireless power transfer technology for biomedical implants.
    Jiang H; Zhang J; Lan D; Chao ; Liou S; Shahnasser H; Fechter R; Hirose S; Harrison M; Roy S
    IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):526-35. PubMed ID: 23893211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel wireless power and data transmission AC to DC converter for an implantable device.
    Liu JY; Tang KT
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1875-8. PubMed ID: 24110077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Dual-Output Single-Stage Regulating Rectifier With PWM and Dual-Mode PFM Control for Wireless Powering of Biomedical Implants.
    Erfani R; Marefat F; Mohseni P
    IEEE Trans Biomed Circuits Syst; 2020 Dec; 14(6):1195-1206. PubMed ID: 33216720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 0.04 mm (2) Buck-Boost DC-DC Converter for Biomedical Implants Using Adaptive Gain and Discrete Frequency Scaling Control.
    George L; Gargiulo GD; Lehmann T; Hamilton TJ
    IEEE Trans Biomed Circuits Syst; 2016 Jun; 10(3):668-78. PubMed ID: 26600247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Miniaturized, Low-Frequency Magnetoelectric Wireless Power Transfer System for Powering Biomedical Implants.
    Mukherjee D; Rainu SK; Singh N; Mallick D
    IEEE Trans Biomed Circuits Syst; 2024 Apr; 18(2):438-450. PubMed ID: 37999967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Power Feedback and Maximum Efficiency Point Tracking for Miniaturized RF Wireless Power Transfer Systems.
    Stoecklin S; Yousaf A; Gidion G; Reindl L; Rupitsch SJ
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Capacitive DC-DC Boost Converter with Gate Bias Boosting and Dynamic Body Biasing for an RF Energy Harvesting System.
    Jung J; Kwon I
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 13.56 MHz CMOS Active Rectifier With Switched-Offset and Compensated Biasing for Biomedical Wireless Power Transfer Systems.
    Yan Lu ; Wing-Hung Ki
    IEEE Trans Biomed Circuits Syst; 2014 Jun; 8(3):334-44. PubMed ID: 23846494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo RF powering for advanced biological research.
    Zimmerman MD; Chaimanonart N; Young DJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2506-9. PubMed ID: 17945719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Voltage DC-DC Converter for IoT and On-Chip Energy Harvester Applications.
    Potocny M; Kovac M; Arbet D; Sovcik M; Nagy L; Stopjakova V; Ravasz R
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An On-Chip Multi-Voltage Power Converter With Leakage Current Prevention Using 0.18 μm High-Voltage CMOS Process.
    Lo YK; Chen K; Gad P; Liu W
    IEEE Trans Biomed Circuits Syst; 2016 Feb; 10(1):163-74. PubMed ID: 25616076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A self-powered wireless motion sensor based on a high-surface area reverse electrowetting-on-dielectric energy harvester.
    Tasneem NT; Biswas DK; Adhikari PR; Gunti A; Patwary AB; Reid RC; Mahbub I
    Sci Rep; 2022 Mar; 12(1):3782. PubMed ID: 35260661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A flexible super-capacitive solid-state power supply for miniature implantable medical devices.
    Meng C; Gall OZ; Irazoqui PP
    Biomed Microdevices; 2013 Dec; 15(6):973-83. PubMed ID: 23832644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 13.56 MHz Triple Mode Rectifier Circuit With Extended Coupling Range for Wirelessly Powered Implantable Medical Devices.
    Engur Y; Yigit HA; Kulah H
    IEEE Trans Biomed Circuits Syst; 2021 Feb; 15(1):68-79. PubMed ID: 33360999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel ZVS full-bridge cascaded step-up DC-DC converter with resonant auxiliary circuit for high voltage-gain applications.
    Hossain MZ; Selvaraj JA; Rahim NA
    PLoS One; 2024; 19(8):e0306906. PubMed ID: 39146264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Composite DC-DC Converter Based on the Versatile Buck-Boost Topology for Electric Vehicle Applications.
    González-Castaño C; Restrepo C; Flores-Bahamonde F; Rodriguez J
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving efficiency of DC/DC booster converters used in electrical stimulators.
    Aqueveque P; Saavedra F; Pino E
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3848-3851. PubMed ID: 29060737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Energy-Efficient Implantable-Neural-Stimulator System with Wireless Charging and Dynamic Voltage Output.
    Fu X; Mai S; Wang Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3835-3839. PubMed ID: 31946710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wireless power transmission for biomedical implants: The role of near-zero threshold CMOS rectifiers.
    Mohammadi A; Redoute JM; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5453-6. PubMed ID: 26737525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.