These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 23366240)

  • 21. Real-time recognition of different imagined actions on the same side of a single limb based on the fNIRS correlation coefficient.
    Fu Y; Wang F; Li Y; Gong A; Qian Q; Su L; Zhao L
    Biomed Tech (Berl); 2022 Jun; 67(3):173-183. PubMed ID: 35420003
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification.
    Chiarelli AM; Croce P; Merla A; Zappasodi F
    J Neural Eng; 2018 Jun; 15(3):036028. PubMed ID: 29446352
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG.
    Kaiser V; Bauernfeind G; Kreilinger A; Kaufmann T; Kübler A; Neuper C; Müller-Putz GR
    Neuroimage; 2014 Jan; 85 Pt 1():432-44. PubMed ID: 23651839
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Recognition of three different imagined movement of the right foot based on functional near-infrared spectroscopy].
    Li Y; Xiong X; Li Z; Fu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Apr; 37(2):262-270. PubMed ID: 32329278
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decoding lexical tones and vowels in imagined tonal monosyllables using fNIRS signals.
    Guo Z; Chen F
    J Neural Eng; 2022 Nov; 19(6):. PubMed ID: 36317255
    [No Abstract]   [Full Text] [Related]  

  • 26. Impacts of simplifying articulation movements imagery to speech imagery BCI performance.
    Guo Z; Chen F
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36630714
    [No Abstract]   [Full Text] [Related]  

  • 27. Functional Near-Infrared Spectroscopy for the Classification of Motor-Related Brain Activity on the Sensor-Level.
    Hramov AE; Grubov V; Badarin A; Maksimenko VA; Pisarchik AN
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32326270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Classification of hemodynamic responses associated with force and speed imagery for a brain-computer interface.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Med Syst; 2015 May; 39(5):53. PubMed ID: 25732084
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Subject-Independent Functional Near-Infrared Spectroscopy-Based Brain-Computer Interfaces Based on Convolutional Neural Networks.
    Kwon J; Im CH
    Front Hum Neurosci; 2021; 15():646915. PubMed ID: 33776674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigating deep learning for fNIRS based BCI.
    Hennrich J; Herff C; Heger D; Schultz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2844-7. PubMed ID: 26736884
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toward a compact hybrid brain-computer interface (BCI): Performance evaluation of multi-class hybrid EEG-fNIRS BCIs with limited number of channels.
    Kwon J; Shin J; Im CH
    PLoS One; 2020; 15(3):e0230491. PubMed ID: 32187208
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Computationally Efficient Method for Hybrid EEG-fNIRS BCI Based on the Pearson Correlation.
    Hasan MAH; Khan MU; Mishra D
    Biomed Res Int; 2020; 2020():1838140. PubMed ID: 32923476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks.
    Buccino AP; Keles HO; Omurtag A
    PLoS One; 2016; 11(1):e0146610. PubMed ID: 26730580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Decoding four different sound-categories in the auditory cortex using functional near-infrared spectroscopy.
    Hong KS; Santosa H
    Hear Res; 2016 Mar; 333():157-166. PubMed ID: 26828741
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of various mental task combinations for near-infrared spectroscopy-based brain-computer interfaces.
    Hwang HJ; Lim JH; Kim DW; Im CH
    J Biomed Opt; 2014; 19(7):77005. PubMed ID: 25036216
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lower Limb Movement Preparation in Chronic Stroke: A Pilot Study Toward an fNIRS-BCI for Gait Rehabilitation.
    Rea M; Rana M; Lugato N; Terekhin P; Gizzi L; Brötz D; Fallgatter A; Birbaumer N; Sitaram R; Caria A
    Neurorehabil Neural Repair; 2014 Jul; 28(6):564-75. PubMed ID: 24482298
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single trial classification of fNIRS-based brain-computer interface mental arithmetic data: a comparison between different classifiers.
    Bauernfeind G; Steyrl D; Brunner C; Muller-Putz GR
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2004-7. PubMed ID: 25570376
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reconstructing functional near-infrared spectroscopy (fNIRS) signals impaired by extra-cranial confounds: an easy-to-use filter method.
    Haeussinger FB; Dresler T; Heinzel S; Schecklmann M; Fallgatter AJ; Ehlis AC
    Neuroimage; 2014 Jul; 95():69-79. PubMed ID: 24657779
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Bimodal Deep Learning Architecture for EEG-fNIRS Decoding of Overt and Imagined Speech.
    Cooney C; Folli R; Coyle D
    IEEE Trans Biomed Eng; 2022 Jun; 69(6):1983-1994. PubMed ID: 34874850
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analyzing Classification Performance of fNIRS-BCI for Gait Rehabilitation Using Deep Neural Networks.
    Hamid H; Naseer N; Nazeer H; Khan MJ; Khan RA; Shahbaz Khan U
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.