These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23366261)

  • 1. How stimulation speed affects Event-Related Potentials and BCI performance.
    Höhne J; Tangermann M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1802-5. PubMed ID: 23366261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous multiple-stimulus auditory brain-computer interface with semi-supervised learning and prior probability distribution tuning.
    Ogino M; Hamada N; Mitsukura Y
    J Neural Eng; 2022 Nov; 19(6):. PubMed ID: 36317357
    [No Abstract]   [Full Text] [Related]  

  • 3. Beyond maximum speed--a novel two-stimulus paradigm for brain-computer interfaces based on event-related potentials (P300-BCI).
    Kaufmann T; Kübler A
    J Neural Eng; 2014 Oct; 11(5):056004. PubMed ID: 25080406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli.
    Hill NJ; Schölkopf B
    J Neural Eng; 2012 Apr; 9(2):026011. PubMed ID: 22333135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Event-Related Potential-Based Brain-Computer Interface Using the Thai Vowels' and Numerals' Auditory Stimulus Pattern.
    Borirakarawin M; Punsawad Y
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A survey of the dummy face and human face stimuli used in BCI paradigm.
    Chen L; Jin J; Zhang Y; Wang X; Cichocki A
    J Neurosci Methods; 2015 Jan; 239():18-27. PubMed ID: 25314905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extremely Reduced Data Sets Indicate Optimal Stimulation Parameters for Classification in Brain-Computer Interfaces.
    Sosulski J; Tangermann M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2256-2260. PubMed ID: 31946349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing visual-to-auditory delay for multimodal BCI speller.
    An X; Ming D; Sterling D; Qi H; Blankertz B
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1226-9. PubMed ID: 25570186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.
    Baek HJ; Kim HS; Heo J; Lim YG; Park KS
    J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. No surprise--sequence event-related potentials for brain-computer interfaces.
    Tangermann M; Hohne J; Stecher H; Schreuder M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2501-4. PubMed ID: 23366433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Employing an active mental task to enhance the performance of auditory attention-based brain-computer interfaces.
    Xu H; Zhang D; Ouyang M; Hong B
    Clin Neurophysiol; 2013 Jan; 124(1):83-90. PubMed ID: 22854211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Auditory-Tactile Visual Saccade-Independent P300 Brain-Computer Interface.
    Yin E; Zeyl T; Saab R; Hu D; Zhou Z; Chau T
    Int J Neural Syst; 2016 Feb; 26(1):1650001. PubMed ID: 26678249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visuo-auditory stimuli with semantic, temporal and spatial congruence for a P300-based BCI: An exploratory test with an ALS patient in a completely locked-in state.
    Pires G; Barbosa S; Nunes UJ; Gonçalves E
    J Neurosci Methods; 2022 Sep; 379():109661. PubMed ID: 35817307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural mechanisms of training an auditory event-related potential task in a brain-computer interface context.
    Halder S; Leinfelder T; Schulz SM; Kübler A
    Hum Brain Mapp; 2019 Jun; 40(8):2399-2412. PubMed ID: 30693612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural stimuli improve auditory BCIs with respect to ergonomics and performance.
    Höhne J; Krenzlin K; Dähne S; Tangermann M
    J Neural Eng; 2012 Aug; 9(4):045003. PubMed ID: 22831919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Prefrontal Single-Channel EEG Data for Portable Auditory ERP-Based Brain-Computer Interfaces.
    Ogino M; Kanoga S; Muto M; Mitsukura Y
    Front Hum Neurosci; 2019; 13():250. PubMed ID: 31404255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel visual brain-computer interfaces paradigm based on evoked related potentials evoked by weak and small number of stimuli.
    Xiao X; Gao R; Zhou X; Yi W; Xu F; Wang K; Xu M; Ming D
    Front Neurosci; 2023; 17():1178283. PubMed ID: 37342465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-signature brain-computer interface: use of transient and steady-state responses.
    Severens M; Farquhar J; Duysens J; Desain P
    J Neural Eng; 2013 Apr; 10(2):026005. PubMed ID: 23370146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Study of Influence of Sound on Visual ERP-Based Brain Computer Interface.
    Xu G; Wu Y; Li M
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wheelchair control by elderly participants in a virtual environment with a brain-computer interface (BCI) and tactile stimulation.
    Herweg A; Gutzeit J; Kleih S; Kübler A
    Biol Psychol; 2016 Dec; 121(Pt A):117-124. PubMed ID: 27773679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.