These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23366289)

  • 1. Single degree-of-freedom exoskeleton mechanism design for thumb rehabilitation.
    Yihun Y; Miklos R; Perez-Gracia A; Reinkensmeyer DJ; Denney K; Wolbrecht ET
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1916-20. PubMed ID: 23366289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single degree-of-freedom exoskeleton mechanism design for finger rehabilitation.
    Wolbrecht ET; Reinkensmeyer DJ; Perez-Gracia A
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975427. PubMed ID: 22275628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a thumb module for the FINGER rehabilitation robot.
    Wolbrecht ET; Morse KJ; Perry JC; Reinkensmeyer DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():582-585. PubMed ID: 28268397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a parametric kinematic model of the human hand and a novel robotic exoskeleton.
    Burton TM; Vaidyanathan R; Burgess SC; Turton AJ; Melhuish C
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975344. PubMed ID: 22275549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pediatric robotic thumb exoskeleton for at-home rehabilitation: the Isolated Orthosis for Thumb Actuation (IOTA).
    Aubin PM; Sallum H; Walsh C; Stirling L; Correia A
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650500. PubMed ID: 24187315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.
    Zhang F; Fu Y; Zhang Q; Wang S
    Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove.
    Ben-Tzvi P; Ma Z
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):992-1002. PubMed ID: 25494512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hand rehabilitation after stroke using a wearable, high DOF, spring powered exoskeleton.
    Tianyao Chen ; Lum PS
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():578-581. PubMed ID: 28324934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of an exoskeleton for index finger rehabilitation.
    Wang J; Li J; Zhang Y; Wang S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5957-60. PubMed ID: 19965067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An overview of robotic/mechanical devices for post-stroke thumb rehabilitation.
    Suarez-Escobar M; Rendon-Velez E
    Disabil Rehabil Assist Technol; 2018 Oct; 13(7):683-703. PubMed ID: 29334274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design-validation of a hand exoskeleton using musculoskeletal modeling.
    Hansen C; Gosselin F; Ben Mansour K; Devos P; Marin F
    Appl Ergon; 2018 Apr; 68():283-288. PubMed ID: 29409646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation and evaluation of soft elastomeric actuators for hand assistive and rehabilitation applications.
    Yap HK; Lim JH; Nasrallah F; Cho Hong Goh J; Yeow CH
    J Med Eng Technol; 2016; 40(4):199-209. PubMed ID: 27007297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Development of a Spherical 5-Bar Thumb Exoskeleton Mechanism for Poststroke Rehabilitation.
    Ketkar VD; Wolbrecht ET; Perry JC; Farrens A
    J Med Device; 2023 Jun; 17(2):021002. PubMed ID: 37152413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Powered exoskeleton with palm degrees of freedom for hand rehabilitation.
    Richards DS; Georgilas I; Dagnino G; Dogramadzi S
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4635-8. PubMed ID: 26737327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Design of a Novel Underactuated Robotic Finger Prosthesis for Partial Hand Amputation.
    Jeong GC; Kim Y; Choi W; Gu G; Lee HJ; Hong MB; Kim K
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():861-867. PubMed ID: 31374738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a Pneumatic Exoskeleton Robot for Lower Limb Rehabilitation.
    Goergen R; Valdiero AC; Rasia LA; Oberdorfer M; de Souza JP; Goncalves RS
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():187-192. PubMed ID: 31374628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a wearable hand exoskeleton for exercising flexion/extension of the fingers.
    Jo I; Lee J; Park Y; Bae J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1615-1620. PubMed ID: 28814051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and feasibility of the T-GRIP thumb exoskeleton to support the lateral pinch grasp of spinal cord injury patients.
    Haarman CJW; Hekman EEG; Maas EM; Rietman JS; Van Der Kooij H
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation.
    Leonardis D; Barsotti M; Loconsole C; Solazzi M; Troncossi M; Mazzotti C; Castelli VP; Procopio C; Lamola G; Chisari C; Bergamasco M; Frisoli A
    IEEE Trans Haptics; 2015; 8(2):140-51. PubMed ID: 25838528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. iHandRehab: an interactive hand exoskeleton for active and passive rehabilitation.
    Li J; Zheng R; Zhang Y; Yao J
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975387. PubMed ID: 22275591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.