BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23366295)

  • 1. Hidden marker position estimation during sit-to-stand with walker.
    Yoon SH; Jun HG; Dan BJ; Jo BR; Min BH
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1940-3. PubMed ID: 23366295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematic analysis of sit-to-stand assistive device for the elderly and disabled.
    Kim I; Cho W; Yuk G; Yang H; Jo BR; Min BH
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975438. PubMed ID: 22275638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The contribution of handgrip assistance on lower limb joint moments during sit-to-stand and stand-to-sit: a preliminary comparative study.
    Saadé A; Pudlo P; Lempereur M; Rémy-Néris O
    Comput Methods Biomech Biomed Engin; 2014; 17 Suppl 1():102-3. PubMed ID: 25074185
    [No Abstract]   [Full Text] [Related]  

  • 4. Sit-to-stand movement changes in preschool-aged children with spastic diplegia following one neurodevelopmental treatment session--a pilot study.
    Yonetsu R; Iwata A; Surya J; Unase K; Shimizu J
    Disabil Rehabil; 2015; 37(18):1643-50. PubMed ID: 25327772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of varying task constraints on solutions to joint coordination in a sit-to-stand task.
    Scholz JP; Reisman D; Schöner G
    Exp Brain Res; 2001 Dec; 141(4):485-500. PubMed ID: 11810142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modifying center of mass trajectory during sit-to-stand tasks redistributes the mechanical demand across the lower extremity joints.
    Mathiyakom W; McNitt-Gray JL; Requejo P; Costa K
    Clin Biomech (Bristol, Avon); 2005 Jan; 20(1):105-11. PubMed ID: 15567544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foot Position Measurement during Assistive Motion for Sit-to-Stand Using a Single Inertial Sensor and Shoe-Type Force Sensors.
    Kitagawa K; Gorordo Fernandez I; Nagasaki T; Nakano S; Hida M; Okamatsu S; Wada C
    Int J Environ Res Public Health; 2021 Oct; 18(19):. PubMed ID: 34639781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating Sit-to-Stand Dynamics Using a Single Depth Camera.
    Matthew RP; Seko S; Bailey J; Bajcsy R; Lotz J
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2592-2602. PubMed ID: 30716057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Walking and sit-to-stand support system for elderly and disabled.
    Jun HG; Chang YY; Dan BJ; Jo BR; Min BH; Yang H; Song WK; Kim J
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975365. PubMed ID: 22275569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliability of a clinical kinematic assessment of the sit-to-stand movement.
    Jeng SF; Schenkman M; Riley PO; Lin SJ
    Phys Ther; 1990 Aug; 70(8):511-20. PubMed ID: 2374780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of the lower extremity joint motions on the total body motion in sit-to-stand movement.
    Yu B; Holly-Crichlow N; Brichta P; Reeves GR; Zablotny CM; Nawoczenski DA
    Clin Biomech (Bristol, Avon); 2000 Jul; 15(6):449-55. PubMed ID: 10771124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Handrail Height on Sit-To-Stand Movement.
    Kinoshita S; Kiyama R; Yoshimoto Y
    PLoS One; 2015; 10(7):e0133747. PubMed ID: 26207755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Movement variability in adults with low back pain during sit-to-stand-to-sit.
    Ippersiel P; Robbins S; Preuss R
    Clin Biomech (Bristol, Avon); 2018 Oct; 58():90-95. PubMed ID: 30064042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fuzzy controller for lower limb exoskeletons during sit-to-stand and stand-to-sit movement using wearable sensors.
    Reza SM; Ahmad N; Choudhury IA; Ghazilla RA
    Sensors (Basel); 2014 Mar; 14(3):4342-63. PubMed ID: 24599193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical analysis of sit-to-stand movement in normal and obese subjects.
    Sibella F; Galli M; Romei M; Montesano A; Crivellini M
    Clin Biomech (Bristol, Avon); 2003 Oct; 18(8):745-50. PubMed ID: 12957561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic evaluation of the 30-s chair stand test using inertial/magnetic-based technology in an older prefrail population.
    Millor N; Lecumberri P; Gomez M; Martinez-Ramirez A; Rodriguez-Manas L; Garcia-Garcia FJ; Izquierdo M
    IEEE J Biomed Health Inform; 2013 Jul; 17(4):820-7. PubMed ID: 25055310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of unilateral grab rail assistance on the sit-to-stand performance of older aged adults.
    O'Meara DM; Smith RM
    Hum Mov Sci; 2006 Apr; 25(2):257-74. PubMed ID: 16458382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated stand-up and sit-down detection for robot-assisted body-weight support training with the FLOAT.
    Bannwart M; Emst D; Easthope C; Bolliger M; Rauter G
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():412-417. PubMed ID: 28813854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic Characteristics of Sit-to-Stand Movements in Patients With Low Back Pain: A Systematic Review.
    Sedrez JA; Mesquita PV; Gelain GM; Candotti CT
    J Manipulative Physiol Ther; 2019 Sep; 42(7):532-540. PubMed ID: 31864436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new method of determination of phases and symmetry in stand-to-sit-to-stand movement.
    Błażkiewicz M; Wiszomirska I; Wit A
    Int J Occup Med Environ Health; 2014 Aug; 27(4):660-71. PubMed ID: 25060401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.