BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 23366397)

  • 1. Fabrication of a thin-film capacitive force sensor array for tactile feedback in robotic surgery.
    Paydar OH; Wottawa CR; Fan RE; Dutson EP; Grundfest WS; Culjat MO; Candler RN
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2355-8. PubMed ID: 23366397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A tactile feedback system for robotic surgery.
    Culjat MO; King CH; Franco ML; Lewis CE; Bisley JW; Dutson EP; Grundfest WS
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1930-4. PubMed ID: 19163068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and testing of a tactile feedback system for robotic surgery.
    Grundfest WS; Culjat MO; King CH; Franco ML; Wottawa C; Lewis CE; Bisley JW; Dutson EP
    Stud Health Technol Inform; 2009; 142():103-8. PubMed ID: 19377124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic resonance imaging-compatible tactile sensing device based on a piezoelectric array.
    Hamed A; Masamune K; Tse ZT; Lamperth M; Dohi T
    Proc Inst Mech Eng H; 2012 Jul; 226(7):565-75. PubMed ID: 22913103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, simulation and fabrication of a low cost capacitive tactile shear sensor for a robotic hand.
    Shashank A; Tiwana MI; Redmond SJ; Lovell NH
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4132-5. PubMed ID: 19963809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An MRI-Guided Telesurgery System Using a Fabry-Perot Interferometry Force Sensor and a Pneumatic Haptic Device.
    Su H; Shang W; Li G; Patel N; Fischer GS
    Ann Biomed Eng; 2017 Aug; 45(8):1917-1928. PubMed ID: 28447178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contact force measurement of instruments for force-feedback on a surgical robot: acceleration force cancellations based on acceleration sensor readings.
    Shimachi S; Kameyama F; Hakozaki Y; Fujiwara Y
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):97-104. PubMed ID: 16685948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Fabrication Technology of Low Profile Tactile Sensor with Digital Interface for Whole Body Robot Skin.
    Makihata M; Muroyama M; Tanaka S; Nakayama T; Nonomura Y; Esashi M
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30037093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adapter for contact force sensing of the da Vinci robot.
    Shimachi S; Hirunyanitiwatna S; Fujiwara Y; Hashimoto A; Hakozaki Y
    Int J Med Robot; 2008 Jun; 4(2):121-30. PubMed ID: 18382995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tactile Sensing for Minimally Invasive Surgery: Conventional Methods and Potential Emerging Tactile Technologies.
    Othman W; Lai ZA; Abril C; Barajas-Gamboa JS; Corcelles R; Kroh M; Qasaimeh MA
    Front Robot AI; 2021; 8():705662. PubMed ID: 35071332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro-force sensing in robot assisted membrane peeling for vitreoretinal surgery.
    Balicki M; Uneri A; Iordachita I; Handa J; Gehlbach P; Taylor R
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):303-10. PubMed ID: 20879413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grasper integrated tri-axial force sensor system for robotic minimally invasive surgery.
    Yuan Dai ; Abiri A; Siyuan Liu ; Paydar O; Sohn H; Dutson EP; Grundfest WS; Candler RN
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3936-3939. PubMed ID: 29060758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applying tactile sensing with piezoelectric materials for minimally invasive surgery and magnetic-resonance-guided interventions.
    Hamed AM; Tse ZT; Young I; Davies BL; Lampérth M
    Proc Inst Mech Eng H; 2009 Jan; 223(1):99-110. PubMed ID: 19239071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational intelligence techniques for tactile sensing systems.
    Gastaldo P; Pinna L; Seminara L; Valle M; Zunino R
    Sensors (Basel); 2014 Jun; 14(6):10952-76. PubMed ID: 24949646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Innovative optical microsystem for static and dynamic tissue diagnosis in minimally invasive surgical operations.
    Ahmadi R; Packirisamy M; Dargahi J
    J Biomed Opt; 2012 Aug; 17(8):081416. PubMed ID: 23224177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robotic force stabilization for beating heart intracardiac surgery.
    Yuen SG; Yip MC; Vasilyev NV; Perrin DP; del Nido PJ; Howe RD
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):26-33. PubMed ID: 20425967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high-resolution, ultrabroad-range and sensitive capacitive tactile sensor based on a CNT/PDMS composite for robotic hands.
    Fu X; Zhang J; Xiao J; Kang Y; Yu L; Jiang C; Pan Y; Dong H; Gao S; Wang Y
    Nanoscale; 2021 Nov; 13(44):18780-18788. PubMed ID: 34750598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A robotic catheter system with real-time force feedback and monitor.
    Xiao N; Guo J; Guo S; Tamiya T
    Australas Phys Eng Sci Med; 2012 Sep; 35(3):283-9. PubMed ID: 22763489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechatronic design of haptic forceps for robotic surgery.
    Rizun P; Gunn D; Cox B; Sutherland G
    Int J Med Robot; 2006 Dec; 2(4):341-9. PubMed ID: 17520653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of tactile feedback in medicine.
    Wottawa C; Fan R; Bisley JW; Dutson EP; Culjat MO; Grundfest WS
    Stud Health Technol Inform; 2011; 163():703-9. PubMed ID: 21335884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.