These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 23366397)

  • 41. Effect of sensory substitution on suture-manipulation forces for robotic surgical systems.
    Kitagawa M; Dokko D; Okamura AM; Yuh DD
    J Thorac Cardiovasc Surg; 2005 Jan; 129(1):151-8. PubMed ID: 15632837
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Piezoresistive Tactile Sensor Discriminating Multidirectional Forces.
    Jung Y; Lee DG; Park J; Ko H; Lim H
    Sensors (Basel); 2015 Oct; 15(10):25463-73. PubMed ID: 26445045
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Flexible three-axial force sensor for soft and highly sensitive artificial touch.
    Viry L; Levi A; Totaro M; Mondini A; Mattoli V; Mazzolai B; Beccai L
    Adv Mater; 2014 May; 26(17):2659-64, 2614. PubMed ID: 24677245
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Novel MEMS stiffness sensor for in-vivo tissue characterization measurement.
    Peng P; Sezen AS; Rajamani R; Erdman AG
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6640-3. PubMed ID: 19963926
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Screen-Printed Resistive Tactile Sensor for Monitoring Tissue Interaction Forces on a Surgical Magnetic Microgripper.
    Aubeeluck DA; Forbrigger C; Taromsari SM; Chen T; Diller E; Naguib HE
    ACS Appl Mater Interfaces; 2023 Jul; 15(28):34008-34022. PubMed ID: 37403926
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Force adaptive multi-spectral imaging with an articulated robotic endoscope.
    Noonan DP; Payne CJ; Shang J; Sauvage V; Newton R; Elson D; Darzi A; Yang GZ
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):245-52. PubMed ID: 20879406
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A large area tactile sensor patch based on commercial force sensors.
    Vidal-Verdú F; Barquero MJ; Castellanos-Ramos J; Navas-González R; Sánchez JA; Serón J; García-Cerezo A
    Sensors (Basel); 2011; 11(5):5489-507. PubMed ID: 22163910
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reaction force/torque sensing in a master-slave robot system without mechanical sensors.
    Liu T; Li C; Inoue Y; Shibata K
    Sensors (Basel); 2010; 10(8):7134-45. PubMed ID: 22163595
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent Progress in Technologies for Tactile Sensors.
    Chi C; Sun X; Xue N; Li T; Liu C
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29565835
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A force-sensing surgical tool with a proximally located force/torque sensor.
    Schwalb W; Shirinzadeh B; Smith J
    Int J Med Robot; 2017 Mar; 13(1):. PubMed ID: 26919028
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Discriminating contact in lumen with a moving flexible digit using fibre Bragg grating sensing elements.
    Tam B; Ma X; Webb DJ; Holding DJ; Brett PN
    Proc Inst Mech Eng H; 2010; 224(6):765-74. PubMed ID: 20608493
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrostatic tactile display with thin film slider and its application to tactile telepresentation systems.
    Yamamoto A; Nagasawa S; Yamamoto H; Higuchi T
    IEEE Trans Vis Comput Graph; 2006; 12(2):168-77. PubMed ID: 16509376
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Large-Area and Low-Cost Force/Tactile Capacitive Sensor for Soft Robotic Applications.
    Pagoli A; Chapelle F; Corrales-Ramon JA; Mezouar Y; Lapusta Y
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684706
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assessment of navigation cues with proximal force sensing during endovascular catheterization.
    Rafii-Taril H; Payne CJ; Riga C; Bicknell C; Lee SL; Yang GZ
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):560-7. PubMed ID: 23286093
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A flexible digit with tactile feedback for invasive clinical applications.
    Ma X; Brett PN; Wright MT; Griffiths MV
    Proc Inst Mech Eng H; 2004; 218(3):151-7. PubMed ID: 15239565
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microfluidic tactile sensors for three-dimensional contact force measurements.
    Nie B; Li R; Brandt JD; Pan T
    Lab Chip; 2014 Nov; 14(22):4344-53. PubMed ID: 25200961
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluating tactile feedback in robotic surgery for potential clinical application using an animal model.
    Wottawa CR; Genovese B; Nowroozi BN; Hart SD; Bisley JW; Grundfest WS; Dutson EP
    Surg Endosc; 2016 Aug; 30(8):3198-209. PubMed ID: 26514132
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An autoclavable wireless palpation instrument for minimally invasive surgery.
    Naidu AS; Escoto A; Fahmy O; Patel RV; Naish MD
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6489-6492. PubMed ID: 28269733
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin.
    Harada S; Kanao K; Yamamoto Y; Arie T; Akita S; Takei K
    ACS Nano; 2014 Dec; 8(12):12851-7. PubMed ID: 25437513
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.