These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 23366468)
1. Frequency-domain measurement of neuronal activity using dynamic optical coherence tomography. Lee J; Boas DA Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2643-6. PubMed ID: 23366468 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of coupling between optical intrinsic signals and neuronal activity in rat somatosensory cortex. Sheth S; Nemoto M; Guiou M; Walker M; Pouratian N; Toga AW Neuroimage; 2003 Jul; 19(3):884-94. PubMed ID: 12880817 [TBL] [Abstract][Full Text] [Related]
3. Optical Coherence Tomography angiography reveals laminar microvascular hemodynamics in the rat somatosensory cortex during activation. Srinivasan VJ; Radhakrishnan H Neuroimage; 2014 Nov; 102 Pt 2(0 2):393-406. PubMed ID: 25111471 [TBL] [Abstract][Full Text] [Related]
4. In vivo imaging of the rat cerebral microvessels with optical coherence tomography. Satomura Y; Seki J; Ooi Y; Yanagida T; Seiyama A Clin Hemorheol Microcirc; 2004; 31(1):31-40. PubMed ID: 15272151 [TBL] [Abstract][Full Text] [Related]
5. Diversity of neural-hemodynamic relationships associated with differences in cortical processing during bilateral somatosensory activation in rats. Nemoto M; Hoshi Y; Sato C; Iguchi Y; Hashimoto I; Kohno E; Hirano T; Terakawa S Neuroimage; 2012 Feb; 59(4):3325-38. PubMed ID: 22166795 [TBL] [Abstract][Full Text] [Related]
10. The use of intensity-based Doppler variance method for single vessel response to functional neurovascular activation. Kuo WC; Kuo YM; Syu JP; Wang HL; Lai CM; Chen JW; Lo YC; Chen YY J Biophotonics; 2018 Jul; 11(7):e201800017. PubMed ID: 29688625 [TBL] [Abstract][Full Text] [Related]
11. Noninvasive measurement of neuronal activity with near-infrared optical imaging. Franceschini MA; Boas DA Neuroimage; 2004 Jan; 21(1):372-86. PubMed ID: 14741675 [TBL] [Abstract][Full Text] [Related]
12. Differential topography of the bilateral cortical projections to the whisker and forepaw regions in rat motor cortex. Colechio EM; Alloway KD Brain Struct Funct; 2009 Sep; 213(4-5):423-39. PubMed ID: 19672624 [TBL] [Abstract][Full Text] [Related]
13. Temporal comparison of functional brain imaging with diffuse optical tomography and fMRI during rat forepaw stimulation. Siegel AM; Culver JP; Mandeville JB; Boas DA Phys Med Biol; 2003 May; 48(10):1391-403. PubMed ID: 12812454 [TBL] [Abstract][Full Text] [Related]
14. Temporal profiles and 2-dimensional oxy-, deoxy-, and total-hemoglobin somatosensory maps in rat versus mouse cortex. Prakash N; Biag JD; Sheth SA; Mitsuyama S; Theriot J; Ramachandra C; Toga AW Neuroimage; 2007; 37 Suppl 1(Suppl 1):S27-36. PubMed ID: 17574868 [TBL] [Abstract][Full Text] [Related]
15. Mouse fMRI under ketamine and xylazine anesthesia: Robust contralateral somatosensory cortex activation in response to forepaw stimulation. Shim HJ; Jung WB; Schlegel F; Lee J; Kim S; Lee J; Kim SG Neuroimage; 2018 Aug; 177():30-44. PubMed ID: 29730495 [TBL] [Abstract][Full Text] [Related]
16. Laminar microvascular transit time distribution in the mouse somatosensory cortex revealed by Dynamic Contrast Optical Coherence Tomography. Merkle CW; Srinivasan VJ Neuroimage; 2016 Jan; 125():350-362. PubMed ID: 26477654 [TBL] [Abstract][Full Text] [Related]
18. Exchange transfusion with fluorocarbon for studying synaptically evoked optical signal in rat cortex. Nomura Y; Fujii F; Sato C; Nemoto M; Tamura M Brain Res Brain Res Protoc; 2000 Feb; 5(1):10-5. PubMed ID: 10719260 [TBL] [Abstract][Full Text] [Related]
19. Interactions between stimuli-evoked cortical activity and spontaneous low frequency oscillations measured with neuronal calcium. Chen W; Park K; Pan Y; Koretsky AP; Du C Neuroimage; 2020 Apr; 210():116554. PubMed ID: 31972283 [TBL] [Abstract][Full Text] [Related]