These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 23366469)
1. 3D reconstruction of coronary arteries using frequency domain optical coherence tomography images and biplane angiography. Athanasiou LS; Bourantas CV; Siogkas PK; Sakellarios AI; Exarchos TP; Naka KK; Papafaklis MI; Michalis LK; Prati F; Fotiadis DI Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2647-50. PubMed ID: 23366469 [TBL] [Abstract][Full Text] [Related]
2. A novel hybrid approach for reconstruction of coronary bifurcations using angiography and OCT. Andrikos IO; Sakellarios AI; Siogkas PK; Rigas G; Exarchos TP; Athanasiou LS; Karanasos A; Toutouzas K; Tousoulis D; Michalis LK; Fotiadis DI Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():588-591. PubMed ID: 29059941 [TBL] [Abstract][Full Text] [Related]
3. Anatomically correct three-dimensional coronary artery reconstruction using frequency domain optical coherence tomographic and angiographic data: head-to-head comparison with intravascular ultrasound for endothelial shear stress assessment in humans. Papafaklis MI; Bourantas CV; Yonetsu T; Vergallo R; Kotsia A; Nakatani S; Lakkas LS; Athanasiou LS; Naka KK; Fotiadis DI; Feldman CL; Stone PH; Serruys PW; Jang IK; Michalis LK EuroIntervention; 2015 Aug; 11(4):407-15. PubMed ID: 24974809 [TBL] [Abstract][Full Text] [Related]
4. Accurate and reproducible reconstruction of coronary arteries and endothelial shear stress calculation using 3D OCT: comparative study to 3D IVUS and 3D QCA. Toutouzas K; Chatzizisis YS; Riga M; Giannopoulos A; Antoniadis AP; Tu S; Fujino Y; Mitsouras D; Doulaverakis C; Tsampoulatidis I; Koutkias VG; Bouki K; Li Y; Chouvarda I; Cheimariotis G; Maglaveras N; Kompatsiaris I; Nakamura S; Reiber JH; Rybicki F; Karvounis H; Stefanadis C; Tousoulis D; Giannoglou GD Atherosclerosis; 2015 Jun; 240(2):510-9. PubMed ID: 25932791 [TBL] [Abstract][Full Text] [Related]
5. Reproducibility of coronary optical coherence tomography for lumen and length measurements in humans (The CLI-VAR [Centro per la Lotta contro l'Infarto-VARiability] study). Fedele S; Biondi-Zoccai G; Kwiatkowski P; Di Vito L; Occhipinti M; Cremonesi A; Albertucci M; Materia L; Paoletti G; Prati F Am J Cardiol; 2012 Oct; 110(8):1106-12. PubMed ID: 22748353 [TBL] [Abstract][Full Text] [Related]
6. A method for 3D reconstruction of coronary arteries using biplane angiography and intravascular ultrasound images. Bourantas CV; Kourtis IC; Plissiti ME; Fotiadis DI; Katsouras CS; Papafaklis MI; Michalis LK Comput Med Imaging Graph; 2005 Dec; 29(8):597-606. PubMed ID: 16278063 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional spatial reconstruction of coronary arteries based on fusion of intravascular optical coherence tomography and coronary angiography. Zhu Y; Zhu F; Ding Z; Tao K; Lai T; Kuang H; Hua P; Shang M; Hu J; Yu Y; Liu T J Biophotonics; 2021 Mar; 14(3):e202000370. PubMed ID: 33247508 [TBL] [Abstract][Full Text] [Related]
8. Optimized Computer-Aided Segmentation and Three-Dimensional Reconstruction Using Intracoronary Optical Coherence Tomography. Athanasiou L; Nezami FR; Galon MZ; Lopes AC; Lemos PA; de la Torre Hernandez JM; Ben-Assa E; Edelman ER IEEE J Biomed Health Inform; 2018 Jul; 22(4):1168-1176. PubMed ID: 29969405 [TBL] [Abstract][Full Text] [Related]
9. 3D reconstruction of coronary artery bifurcations from coronary angiography and optical coherence tomography: feasibility, validation, and reproducibility. Wu W; Samant S; de Zwart G; Zhao S; Khan B; Ahmad M; Bologna M; Watanabe Y; Murasato Y; Burzotta F; Brilakis ES; Dangas G; Louvard Y; Stankovic G; Kassab GS; Migliavacca F; Chiastra C; Chatzizisis YS Sci Rep; 2020 Oct; 10(1):18049. PubMed ID: 33093499 [TBL] [Abstract][Full Text] [Related]
10. Feasibility and safety of the second-generation, frequency domain optical coherence tomography (FD-OCT): a multicenter study. Yoon JH; Di Vito L; Moses JW; Fearon WF; Yeung AC; Zhang S; Bezerra HG; Costa MA; Jang IK J Invasive Cardiol; 2012 May; 24(5):206-9. PubMed ID: 22562913 [TBL] [Abstract][Full Text] [Related]
11. In-vivo validation of spatially correct three-dimensional reconstruction of human coronary arteries by integrating intravascular ultrasound and biplane angiography. Giannoglou GD; Chatzizisis YS; Sianos G; Tsikaderis D; Matakos A; Koutkias V; Diamantopoulos P; Maglaveras N; Parcharidis GE; Louridas GE Coron Artery Dis; 2006 Sep; 17(6):533-43. PubMed ID: 16905966 [TBL] [Abstract][Full Text] [Related]
12. Automatic segmentation of optical coherence tomography pullbacks of coronary arteries treated with bioresorbable vascular scaffolds: Application to hemodynamics modeling. Bologna M; Migliori S; Montin E; Rampat R; Dubini G; Migliavacca F; Mainardi L; Chiastra C PLoS One; 2019; 14(3):e0213603. PubMed ID: 30870477 [TBL] [Abstract][Full Text] [Related]
13. Point-Cloud Method for Automated 3D Coronary Tree Reconstruction From Multiple Non-Simultaneous Angiographic Projections. Banerjee A; Galassi F; Zacur E; De Maria GL; Choudhury RP; Grau V IEEE Trans Med Imaging; 2020 Apr; 39(4):1278-1290. PubMed ID: 31613752 [TBL] [Abstract][Full Text] [Related]
15. Feasibility of intracoronary frequency domain optical coherence tomography derived fractional flow reserve for the assessment of coronary artery stenosis. Zafar H; Sharif F; Leahy MJ Int Heart J; 2014; 55(4):307-11. PubMed ID: 24909988 [TBL] [Abstract][Full Text] [Related]
16. OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study. Kubo T; Akasaka T; Shite J; Suzuki T; Uemura S; Yu B; Kozuma K; Kitabata H; Shinke T; Habara M; Saito Y; Hou J; Suzuki N; Zhang S JACC Cardiovasc Imaging; 2013 Oct; 6(10):1095-1104. PubMed ID: 24011777 [TBL] [Abstract][Full Text] [Related]
17. True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation. Slager CJ; Wentzel JJ; Schuurbiers JC; Oomen JA; Kloet J; Krams R; von Birgelen C; van der Giessen WJ; Serruys PW; de Feyter PJ Circulation; 2000 Aug; 102(5):511-6. PubMed ID: 10920062 [TBL] [Abstract][Full Text] [Related]
18. A vessel length-based method to compute coronary fractional flow reserve from optical coherence tomography images. Lee KE; Lee SH; Shin ES; Shim EB Biomed Eng Online; 2017 Jun; 16(1):83. PubMed ID: 28651585 [TBL] [Abstract][Full Text] [Related]
19. In-vivo segmentation and quantification of coronary lesions by optical coherence tomography images for a lesion type definition and stenosis grading. Celi S; Berti S Med Image Anal; 2014 Oct; 18(7):1157-68. PubMed ID: 25077844 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional reconstruction of coronary arteries and plaque morphology using CT angiography - comparison and registration using IVUS. Athanasiou LS; Rigas GA; Sakellarios AI; Exarchos TP; Siogkas PK; Michalis LK; Parodi O; Vozzi F; Fotiadis DI Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5638-41. PubMed ID: 26737571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]