These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23366505)

  • 1. Image segmentation for enhancing symbol recognition in prosthetic vision.
    Horne L; Barnes N; McCarthy C; He X
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2792-5. PubMed ID: 23366505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image processing strategies based on saliency segmentation for object recognition under simulated prosthetic vision.
    Li H; Su X; Wang J; Kan H; Han T; Zeng Y; Chai X
    Artif Intell Med; 2018 Jan; 84():64-78. PubMed ID: 29129481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semantic labelling to aid navigation in prosthetic vision.
    Horne L; Alvarez JM; McCarthy C; Barnes N
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3379-82. PubMed ID: 26737017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simplification of Visual Rendering in Simulated Prosthetic Vision Facilitates Navigation.
    Vergnieux V; Macé MJ; Jouffrais C
    Artif Organs; 2017 Sep; 41(9):852-861. PubMed ID: 28321887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulated Prosthetic Vision: The Benefits of Computer-Based Object Recognition and Localization.
    Macé MJ; Guivarch V; Denis G; Jouffrais C
    Artif Organs; 2015 Jul; 39(7):E102-13. PubMed ID: 25900238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Image processing strategies based on visual attention models under simulated prosthetic vision].
    Fu W; Wang J; Lu Y; Wu H; Chai X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2013 May; 37(3):199-202. PubMed ID: 24015615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semantic and structural image segmentation for prosthetic vision.
    Sanchez-Garcia M; Martinez-Cantin R; Guerrero JJ
    PLoS One; 2020; 15(1):e0227677. PubMed ID: 31995568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The application of computer vision to visual prosthesis.
    Wang J; Zhu H; Liu J; Li H; Han Y; Zhou R; Zhang Y
    Artif Organs; 2021 Oct; 45(10):1141-1154. PubMed ID: 34318520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image Processing Strategies Based on a Visual Saliency Model for Object Recognition Under Simulated Prosthetic Vision.
    Wang J; Li H; Fu W; Chen Y; Li L; Lyu Q; Han T; Chai X
    Artif Organs; 2016 Jan; 40(1):94-100. PubMed ID: 25981202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Text image processing for visual prostheses.
    Wang S; Li Y; Barnes N
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2977-80. PubMed ID: 23366550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal prosthetic vision simulation: temporal aspects.
    Avraham D; Jung JH; Yitzhaky Y; Peli E
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34359062
    [No Abstract]   [Full Text] [Related]  

  • 12. Phosphene object perception employs holistic processing during early visual processing stage.
    Guo H; Yang Y; Gu G; Zhu Y; Qiu Y
    Artif Organs; 2013 Apr; 37(4):401-8. PubMed ID: 23489114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Face recognition in simulated prosthetic vision: face detection-based image processing strategies.
    Wang J; Wu X; Lu Y; Wu H; Kan H; Chai X
    J Neural Eng; 2014 Aug; 11(4):046009. PubMed ID: 24921713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulating prosthetic vision: Optimizing the information content of a limited visual display.
    van Rheede JJ; Kennard C; Hicks SL
    J Vis; 2010 Dec; 10(14):. PubMed ID: 21191130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating prosthetic vision: I. Visual models of phosphenes.
    Chen SC; Suaning GJ; Morley JW; Lovell NH
    Vision Res; 2009 Jun; 49(12):1493-506. PubMed ID: 19504749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An face-based visual fixation system for prosthetic vision.
    He X; Kim J; Barnes N
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2981-4. PubMed ID: 23366551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward the development of a color visual prosthesis.
    Towle VL; Pham T; McCaffrey M; Allen D; Troyk PR
    J Neural Eng; 2021 Feb; 18(2):. PubMed ID: 33339020
    [No Abstract]   [Full Text] [Related]  

  • 18. Electrode Dropout Compensation in Visual Prostheses: An Optimal Object Placement Approach.
    Elnabawy RH; Abdennadher S; Hellwich O; Eldawlatly S
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6515-6518. PubMed ID: 34892602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved visual performance in letter perception through edge orientation encoding in a retinal prosthesis simulation.
    Kiral-Kornek FI; OʼSullivan-Greene E; Savage CO; McCarthy C; Grayden DB; Burkitt AN
    J Neural Eng; 2014 Dec; 11(6):066002. PubMed ID: 25307496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Object recognition under distorted prosthetic vision.
    Guo H; Wang Y; Yang Y; Tong S; Zhu Y; Qiu Y
    Artif Organs; 2010 Oct; 34(10):846-56. PubMed ID: 20545671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.