These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 23366510)
1. Localized viscoelasticity measurements with untethered intravitreal microrobots. Pokki J; Ergeneman O; Bergeles C; Torun H; Nelson BJ Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2813-6. PubMed ID: 23366510 [TBL] [Abstract][Full Text] [Related]
2. Viscoelastic interaction between intraocular microrobots and vitreous humor: a finite element approach. Wang Z; Pokki J; Ergeneman O; Nelson BJ; Hirai S Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4937-40. PubMed ID: 24110842 [TBL] [Abstract][Full Text] [Related]
3. Measuring localized viscoelasticity of the vitreous body using intraocular microprobes. Pokki J; Ergeneman O; Sevim S; Enzmann V; Torun H; Nelson BJ Biomed Microdevices; 2015 Oct; 17(5):85. PubMed ID: 26238733 [TBL] [Abstract][Full Text] [Related]
5. Artificial vitreous humor for in vitro experiments. Kummer MP; Abbott JJ; Dinser S; Nelson BJ Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6407-10. PubMed ID: 18003488 [TBL] [Abstract][Full Text] [Related]
6. Cooperative Micromanipulation Using the Independent Actuation of Fifty Microrobots in Parallel. Rahman MA; Cheng J; Wang Z; Ohta AT Sci Rep; 2017 Jun; 7(1):3278. PubMed ID: 28607359 [TBL] [Abstract][Full Text] [Related]
7. Validation of hyaluronic acid-agar-based hydrogels as vitreous humor mimetics for in vitro drug and particle migration evaluations. Thakur SS; Shenoy SK; Suk JS; Hanes JS; Rupenthal ID Eur J Pharm Biopharm; 2020 Mar; 148():118-125. PubMed ID: 31981693 [TBL] [Abstract][Full Text] [Related]
8. Macro- and Microscale Properties of the Vitreous Humor to Inform Substitute Design and Intravitreal Biotransport. Tram NK; Maxwell CJ; Swindle-Reilly KE Curr Eye Res; 2021 Apr; 46(4):429-444. PubMed ID: 33040616 [TBL] [Abstract][Full Text] [Related]
9. In situ formation of hydrogels as vitreous substitutes: Viscoelastic comparison to porcine vitreous. Swindle KE; Hamilton PD; Ravi N J Biomed Mater Res A; 2008 Dec; 87(3):656-65. PubMed ID: 18189301 [TBL] [Abstract][Full Text] [Related]
10. The Roles of Vitreous Biomechanics in Ocular Disease, Biomolecule Transport, and Pharmacokinetics. Luo RH; Tram NK; Parekh AM; Puri R; Reilly MA; Swindle-Reilly KE Curr Eye Res; 2023 Feb; 48(2):195-207. PubMed ID: 35179421 [TBL] [Abstract][Full Text] [Related]
11. Rheology of the vitreous body: Part 2. Viscoelasticity of bovine and porcine vitreous. Lee B; Litt M; Buchsbaum G Biorheology; 1994; 31(4):327-38. PubMed ID: 7981433 [TBL] [Abstract][Full Text] [Related]
12. Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Mahaffy RE; Park S; Gerde E; Käs J; Shih CK Biophys J; 2004 Mar; 86(3):1777-93. PubMed ID: 14990504 [TBL] [Abstract][Full Text] [Related]
13. Rheological Properties and Age-Related Changes of the Human Vitreous Humor. Tram NK; Swindle-Reilly KE Front Bioeng Biotechnol; 2018; 6():199. PubMed ID: 30619846 [TBL] [Abstract][Full Text] [Related]
14. Design and control of in-vivo magnetic microrobots. Yesin KB; Exner P; Vollmers K; Nelson BJ Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):819-26. PubMed ID: 16685922 [TBL] [Abstract][Full Text] [Related]
15. Rheology of the vitreous body. Part I: Viscoelasticity of human vitreous. Lee B; Litt M; Buchsbaum G Biorheology; 1992; 29(5-6):521-33. PubMed ID: 1306380 [TBL] [Abstract][Full Text] [Related]
16. Creep compliance rheology with a probe-like cylindrical geometry. Connelly K; Sharif-Kashani P; Farajzadeh M; Hubschman JP; Kavehpour HP Biorheology; 2016; 53(5-6):221-236. PubMed ID: 28222498 [TBL] [Abstract][Full Text] [Related]
17. Magnetically Actuated Cell-Robot System: Precise Control, Manipulation, and Multimode Conversion. Dai Y; Jia L; Wang L; Sun H; Ji Y; Wang C; Song L; Liang S; Chen D; Feng Y; Bai X; Zhang D; Arai F; Chen H; Feng L Small; 2022 Apr; 18(15):e2105414. PubMed ID: 35233944 [TBL] [Abstract][Full Text] [Related]
18. Relationship between rheological properties and transverse relaxation time (T2) of artificial and porcine vitreous humour. Thakur SS; Pan X; Kumarasinghe GL; Yin N; Pontré BP; Vaghefi E; Rupenthal ID Exp Eye Res; 2020 May; 194():108006. PubMed ID: 32194065 [TBL] [Abstract][Full Text] [Related]
19. Comparison of hydrophilic ophthalmic media on silicone oil emulsification. Soós J; Resch MD; Berkó S; Kovács A; Katona G; Facskó A; Csányi E; Budai-Szűcs M PLoS One; 2020; 15(6):e0235067. PubMed ID: 32559226 [TBL] [Abstract][Full Text] [Related]
20. Dynamics of an oscillating viscoelastic sphere: a model of the vitreous humor of the eye. Buchsbaum G; Sternklar M; Litt M; Grunwald JE; Riva CE Biorheology; 1984; 21(1-2):285-96. PubMed ID: 6466795 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]