These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 23366527)

  • 1. Theoretical study of bone's microstructural effects on Rayleigh wave propagation.
    Vavva MG; Gergidis LN; Charalambopoulos A; Protopappas VC; Polyzos D; Fotiadis DI
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2885-8. PubMed ID: 23366527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study on Rayleigh wave dispersion in bone according to Mindlin's Form II gradient elasticity.
    Vavva MG; Gergidis LN; Protopappas VC; Charalambopoulos A; Polyzos D; Fotiadis DI
    J Acoust Soc Am; 2014 May; 135(5):3117-26. PubMed ID: 24926506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BEM simulations of Rayleigh wave propagation in media with microstructural effects: Application to long bones.
    Papacharalampopoulos A; Vavva MG; Protopappas VC; Polyzos D; Fotiadis DI
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3535-8. PubMed ID: 21097039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A numerical study on the propagation of Rayleigh and guided waves in cortical bone according to Mindlin's Form II gradient elastic theory.
    Papacharalampopoulos A; Vavva MG; Protopappas VC; Fotiadis DI; Polyzos D
    J Acoust Soc Am; 2011 Aug; 130(2):1060-70. PubMed ID: 21877818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Velocity dispersion of guided waves propagating in a free gradient elastic plate: application to cortical bone.
    Vavva MG; Protopappas VC; Gergidis LN; Charalambopoulos A; Fotiadis DI; Polyzos D
    J Acoust Soc Am; 2009 May; 125(5):3414-27. PubMed ID: 19425680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission.
    Haïat G; Naili S; Grimal Q; Talmant M; Desceliers C; Soize C
    J Acoust Soc Am; 2009 Jun; 125(6):4043-52. PubMed ID: 19507985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of the porous microstructure on the overall elastic properties of the osteonal cortical bone.
    Sevostianov I; Kachanov M
    J Biomech; 2000 Jul; 33(7):881-8. PubMed ID: 10831763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concrete wave dispersion interpretation through Mindlin's strain gradient elastic theory.
    Iliopoulos SN; Malm F; Grosse CU; Aggelis DG; Polyzos D
    J Acoust Soc Am; 2017 Jul; 142(1):EL89. PubMed ID: 28764453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micromechanical modeling of elastic properties of cortical bone accounting for anisotropy of dense tissue.
    Salguero L; Saadat F; Sevostianov I
    J Biomech; 2014 Oct; 47(13):3279-87. PubMed ID: 25234350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic properties of cancellous bone derived from finite element models of parameterized microstructure cells.
    Kowalczyk P
    J Biomech; 2003 Jul; 36(7):961-72. PubMed ID: 12757805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the random anisotropic elasticity layer using transient wave propagation in a fluid-solid multilayer: model and experiments.
    Desceliers C; Soize C; Grimal Q; Talmant M; Naili S
    J Acoust Soc Am; 2009 Apr; 125(4):2027-34. PubMed ID: 19354378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The speed of sound through trabecular bone predicted by Biot theory.
    Yoon YJ; Chung JP; Bae CS; Han SY
    J Biomech; 2012 Feb; 45(4):716-8. PubMed ID: 22244093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of boundary conditions on guided wave propagation in two-dimensional models of healing bone.
    Vavva MG; Protopappas VC; Gergidis LN; Charalambopoulos A; Fotiadis DI; Polyzos D
    Ultrasonics; 2008 Nov; 48(6-7):598-606. PubMed ID: 18571687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of the poroelastic parameters of cortical bone.
    Smit TH; Huyghe JM; Cowin SC
    J Biomech; 2002 Jun; 35(6):829-35. PubMed ID: 12021003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On non-locally elastic Rayleigh wave.
    Kaplunov J; Prikazchikov DA; Prikazchikova L
    Philos Trans A Math Phys Eng Sci; 2022 Sep; 380(2231):20210387. PubMed ID: 35858084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An alternative ultrasonic method for measuring the elastic properties of cortical bone.
    Pithioux M; Lasaygues P; Chabrand P
    J Biomech; 2002 Jul; 35(7):961-8. PubMed ID: 12052398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new Rayleigh-like wave in guided propagation of antiplane waves in couple stress materials.
    Nobili A; Radi E; Signorini C
    Proc Math Phys Eng Sci; 2020 Mar; 476(2235):20190822. PubMed ID: 32269492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation of the dependence of quantitative ultrasonic parameters on trabecular bone microarchitecture and elastic constants.
    Haïat G; Padilla F; Barkmann R; Gluer CC; Laugier P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e289-94. PubMed ID: 16859726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the determination of the third-order elastic constants of homogeneous isotropic materials utilising Rayleigh waves.
    Mohabuth M; Khanna A; Hughes J; Vidler J; Kotousov A; Ng CT
    Ultrasonics; 2019 Jul; 96():96-103. PubMed ID: 30833179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A determination of the minimum sizes of representative volume elements for the prediction of cortical bone elastic properties.
    Grimal Q; Raum K; Gerisch A; Laugier P
    Biomech Model Mechanobiol; 2011 Dec; 10(6):925-37. PubMed ID: 21267625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.