These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23366556)

  • 1. A precise charge balancing and compliance voltage monitoring stimulator front-end for 1024-electrodes retinal prosthesis.
    Chun H; Tran N; Yang Y; Kavehei O; Bai S; Skafidas S
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3001-4. PubMed ID: 23366556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Safety ensuring retinal prosthesis with precise charge balance and low power consumption.
    Chun H; Yang Y; Lehmann T
    IEEE Trans Biomed Circuits Syst; 2014 Feb; 8(1):108-18. PubMed ID: 24681924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 16-Channel biphasic current-mode programmable charge balanced neural stimulation.
    Li X; Zhong S; Morizio J
    Biomed Eng Online; 2017 Aug; 16(1):104. PubMed ID: 28806960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A prototype 64-electrode stimulator in 65 nm CMOS process towards a high density epi-retinal prosthesis.
    Tran N; Skafidas E; Yang J; Bai S; Fu M; Ng D; Halpern M; Mareels I
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6729-32. PubMed ID: 22255883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated Low-Voltage Compliance and Wide-Dynamic Stimulator Design for Neural Implantable Devices.
    Oh Y; Hong J; Kim J
    Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Fully Integrated, Power-Efficient, 0.07-2.08 mA, High-Voltage Neural Stimulator in a Standard CMOS Process.
    Palomeque-Mangut D; Rodríguez-Vázquez Á; Delgado-Restituto M
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CMOS-based smart-electrode-type retinal stimulator with bullet-shaped bulk Pt electrodes.
    Tokuda T; Ito T; Kitao T; Noda T; Sasagawa K; Terasawa Y; Tashiro H; Kanda H; Fujikado T; Ohta J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6733-6. PubMed ID: 22255884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PEDOT-CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities.
    Samba R; Herrmann T; Zeck G
    J Neural Eng; 2015 Feb; 12(1):016014. PubMed ID: 25588201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A High-Voltage-Tolerant and Precise Charge-Balanced Neuro-Stimulator in Low Voltage CMOS Process.
    Luo Z; Ker MD
    IEEE Trans Biomed Circuits Syst; 2016 Dec; 10(6):1087-1099. PubMed ID: 27046880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current stimulator IC with adaptive supply regulator for visual prostheses.
    Ko H; Lee SM; Ahn JH; Hong SJ; Yoo HJ; Jung SW; Park SK; Cho DI
    J Biomed Nanotechnol; 2013 Jun; 9(6):992-7. PubMed ID: 23858963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fully-integrated high-compliance voltage SoC for epi-retinal and neural prostheses.
    Lo YK; Chen K; Gad P; Liu W
    IEEE Trans Biomed Circuits Syst; 2013 Dec; 7(6):761-72. PubMed ID: 24473541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fully flexible stimulator using 65 nm CMOS process for 1024-electrode epi-retinal prosthesis.
    Tran N; Yang J; Bai S; Ng D; Halpern M; Grayden DB; Skafidas E; Mareels I
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1643-6. PubMed ID: 19964765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A zero-voltage switching technique for minimizing the current-source power of implanted stimulators.
    Çilingiroğlu U; İpek S
    IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):469-79. PubMed ID: 23893206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual cortex responses to single- and simultaneous multiple-electrode stimulation of the retina: implications for retinal prostheses.
    Shivdasani MN; Fallon JB; Luu CD; Cicione R; Allen PJ; Morley JW; Williams CE
    Invest Ophthalmol Vis Sci; 2012 Sep; 53(10):6291-300. PubMed ID: 22899754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 4.49nW/Pixel Light-to-Stimulus Duration Converter-Based Retinal Prosthesis Chip.
    Choi DH; Roh H; Im M; Jee DW
    IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1140-1148. PubMed ID: 34784285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Multichannel High-Frequency Power-Isolated Neural Stimulator With Crosstalk Reduction.
    Jiang D; Demosthenous A
    IEEE Trans Biomed Circuits Syst; 2018 Aug; 12(4):940-953. PubMed ID: 29993559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 8-Channel Biphasic Current Stimulator Optimized for Retinal Prostheses.
    Lee CE; Jung Y; Song YK
    J Nanosci Nanotechnol; 2021 Aug; 21(8):4298-4302. PubMed ID: 33714317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis.
    Williams I; Constandinou T
    IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):129-39. PubMed ID: 23853295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A linearized current stimulator for deep brain stimulation.
    Shen DL; Chu YJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6485-8. PubMed ID: 21096724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An energy-efficient, adiabatic electrode stimulator with inductive energy recycling and feedback current regulation.
    Arfin SK; Sarpeshkar R
    IEEE Trans Biomed Circuits Syst; 2012 Feb; 6(1):1-14. PubMed ID: 23852740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.