These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 23366567)

  • 41. Design of a cybernetic hand for perception and action.
    Carrozza MC; Cappiello G; Micera S; Edin BB; Beccai L; Cipriani C
    Biol Cybern; 2006 Dec; 95(6):629-44. PubMed ID: 17149592
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Description of the human hand grasp using graph theory.
    Liu X; Zhan Q
    Med Eng Phys; 2013 Jul; 35(7):1020-7. PubMed ID: 23116769
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design and Functional Evaluation of a Dexterous Myoelectric Hand Prosthesis With Biomimetic Tactile Sensor.
    Zhang T; Jiang L; Liu H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1391-1399. PubMed ID: 29985148
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A comparison of the grip force distribution in natural hands and in prosthetic hands.
    Kargov A; Pylatiuk C; Martin J; Schulz S; Döderlein L
    Disabil Rehabil; 2004 Jun; 26(12):705-11. PubMed ID: 15204492
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biomimetic actuators in prosthetic and rehabilitation applications.
    Caldwell DG; Tsagarakis N
    Technol Health Care; 2002; 10(2):107-20. PubMed ID: 12082215
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of a prototype over-actuated biomimetic prosthetic hand.
    Williams MR; Walter W
    PLoS One; 2015; 10(3):e0118817. PubMed ID: 25790306
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assessment of finger forces and wrist torques for functional grasp using new multichannel textile neuroprostheses.
    Lawrence M; Gross GP; Lang M; Kuhn A; Keller T; Morari M
    Artif Organs; 2008 Aug; 32(8):634-8. PubMed ID: 18782135
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multisession, noninvasive closed-loop neuroprosthetic control of grasping by upper limb amputees.
    Agashe HA; Paek AY; Contreras-Vidal JL
    Prog Brain Res; 2016; 228():107-28. PubMed ID: 27590967
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Highly Anthropomorphic Finger Design With a Novel Friction Clutch for Achieving Human-Like Reach-and-Grasp Movements.
    Yong X; Zhu S; Sun Z; Chen S; Togo S; Yokoi H; Jing X; Li G
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4942-4953. PubMed ID: 38060359
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Open-source, low-cost, compliant, modular, underactuated fingers: towards affordable prostheses for partial hand amputations.
    Liarokapis MV; Zisimatos AG; Bousiou MN; Kyriakopoulos KJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2541-4. PubMed ID: 25570508
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Grasp modelling with a biomechanical model of the hand.
    Sancho-Bru JL; Mora MC; León BE; Pérez-González A; Iserte JL; Morales A
    Comput Methods Biomech Biomed Engin; 2014; 17(4):297-310. PubMed ID: 22587336
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Performance characteristics of anthropomorphic prosthetic hands.
    Belter JT; Dollar AM
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975476. PubMed ID: 22275674
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Single degree-of-freedom exoskeleton mechanism design for finger rehabilitation.
    Wolbrecht ET; Reinkensmeyer DJ; Perez-Gracia A
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975427. PubMed ID: 22275628
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrotactile EMG feedback improves the control of prosthesis grasping force.
    Schweisfurth MA; Markovic M; Dosen S; Teich F; Graimann B; Farina D
    J Neural Eng; 2016 Oct; 13(5):056010. PubMed ID: 27547992
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Vision-aided grasp classification: design and evaluation of compact CNN for prosthetic hands.
    Sharma U; Vasamsetti S; Chander SA; Datta B
    Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38697026
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Multigrasp Hand Prosthesis for Providing Precision and Conformal Grasps.
    Bennett DA; Dalley SA; Truex D; Goldfarb M
    IEEE ASME Trans Mechatron; 2014 Sep; PP(99):1-8. PubMed ID: 26167111
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A practical 3D-printed soft robotic prosthetic hand with multi-articulating capabilities.
    Mohammadi A; Lavranos J; Zhou H; Mutlu R; Alici G; Tan Y; Choong P; Oetomo D
    PLoS One; 2020; 15(5):e0232766. PubMed ID: 32407396
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A preliminary study on characterisation of finger interface kinetics using a pressure and shear sensor system.
    Hale N; Valero M; Tang J; Moser D; Jiang L
    Prosthet Orthot Int; 2018 Feb; 42(1):60-65. PubMed ID: 28856964
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Paediatric 3D-Printed Soft Robotic Hand Prosthesis for Children with Upper Limb Loss.
    Mohammadi A; Lavranos J; Tan Y; Choong P; Oetomo D
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3310-3313. PubMed ID: 33018712
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simulation and experimental study on rope driven artificial hand and driven motor.
    Guo K; Lu J; Yang H
    Technol Health Care; 2024; 32(S1):287-297. PubMed ID: 38759057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.