These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23366569)

  • 1. Cortex inspired model for inverse kinematics computation for a humanoid robotic finger.
    Gentili RJ; Oh H; Molina J; Reggia JA; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3052-5. PubMed ID: 23366569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical network modeling for inverse kinematic computation of an anthropomorphic finger.
    Gentili RJ; Oh H; Molina J; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8251-4. PubMed ID: 22256258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cortically-inspired model for inverse kinematics computation of a humanoid finger with mechanically coupled joints.
    Gentili RJ; Oh H; Kregling AV; Reggia JA
    Bioinspir Biomim; 2016 May; 11(3):036013. PubMed ID: 27194213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust neural decoding for dexterous control of robotic hand kinematics.
    Fan J; Vargas L; Kamper DG; Hu X
    Comput Biol Med; 2023 Aug; 162():107139. PubMed ID: 37301095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asynchronous decoding of finger position and of EMG during precision grip using CM cell activity: application to robot control.
    Ouanezar S; Eskiizmirliler S; Maier MA
    J Integr Neurosci; 2011 Dec; 10(4):489-511. PubMed ID: 22262537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anthropomorphic Tendon-Based Hands Controlled by Agonist-Antagonist Corticospinal Neural Network.
    García-Córdova F; Guerrero-González A; Hidalgo-Castelo F
    Sensors (Basel); 2024 May; 24(9):. PubMed ID: 38733030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gaussian Process Autoregression for Simultaneous Proportional Multi-Modal Prosthetic Control With Natural Hand Kinematics.
    Xiloyannis M; Gavriel C; Thomik AAC; Faisal AA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1785-1801. PubMed ID: 28880183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methodology for designing and manufacturing complex biologically inspired soft robotic fluidic actuators: prosthetic hand case study.
    Thompson-Bean E; Das R; McDaid A
    Bioinspir Biomim; 2016 Oct; 11(6):066005. PubMed ID: 27798408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal design of a six-bar linkage with one degree of freedom for an anthropomorphic three-jointed finger mechanism.
    Guo G; Zhang J; Gruver WA
    Proc Inst Mech Eng H; 1993; 207(3):185-90. PubMed ID: 8117370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove.
    Ben-Tzvi P; Ma Z
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):992-1002. PubMed ID: 25494512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compact and low-cost humanoid hand powered by nylon artificial muscles.
    Wu L; Jung de Andrade M; Saharan LK; Rome RS; Baughman RH; Tadesse Y
    Bioinspir Biomim; 2017 Feb; 12(2):026004. PubMed ID: 28157716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Compliant, Underactuated Finger for Anthropomorphic Hands.
    Kontoudis GP; Liarokapis M; Vamvoudakis KG
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():682-688. PubMed ID: 31374710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixed [Formula: see text]-synthesis tracking control and disturbance rejection in a robotic digit of an impaired human hand for anthropomorphic coordination.
    Iqbal M; Imtiaz J; Mughal AM
    Biol Cybern; 2023 Jun; 117(3):221-247. PubMed ID: 37222800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An adaptive spinal-like controller: tunable biomimetic behavior for a robotic limb.
    Stefanovic F; Galiana HL
    Biomed Eng Online; 2014 Nov; 13():151. PubMed ID: 25409735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fuzzy neuronal model of motor control inspired by cerebellar pathways to online and gradually learn inverse biomechanical functions in the presence of delay.
    Salimi-Badr A; Ebadzadeh MM; Darlot C
    Biol Cybern; 2017 Dec; 111(5-6):421-438. PubMed ID: 28993878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neural tracking and motor control approach to improve rehabilitation of upper limb movements.
    Goffredo M; Bernabucci I; Schmid M; Conforto S
    J Neuroeng Rehabil; 2008 Feb; 5():5. PubMed ID: 18251996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of finger motion range with compliant anthropomorphic joint design.
    Çulha U; Iida F
    Bioinspir Biomim; 2016 Feb; 11(2):026001. PubMed ID: 26891473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ensemble-based regression approach for continuous estimation of wrist and fingers movements from surface electromyography.
    Alazrai R; Khalifeh A; Alnuman N; Alabed D; Mowafi Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():319-322. PubMed ID: 28268341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The JamHand: Dexterous Manipulation with Minimal Actuation.
    Amend J; Lipson H
    Soft Robot; 2017 Mar; 4(1):70-80. PubMed ID: 29182098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated linkage-driven dexterous anthropomorphic robotic hand.
    Kim U; Jung D; Jeong H; Park J; Jung HM; Cheong J; Choi HR; Do H; Park C
    Nat Commun; 2021 Dec; 12(1):7177. PubMed ID: 34907178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.