These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 23366624)

  • 1. First study towards linear control of an upper-limb neuroprosthesis with an EEG-based Brain-Computer Interface.
    Pascual J; Velasco-Alvarez F; Muller KR; Vidaurre C
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3269-73. PubMed ID: 23366624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EEG-based BCI for the linear control of an upper-limb neuroprosthesis.
    Vidaurre C; Klauer C; Schauer T; Ramos-Murguialday A; Müller KR
    Med Eng Phys; 2016 Nov; 38(11):1195-1204. PubMed ID: 27425203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury.
    Rohm M; Schneiders M; Müller C; Kreilinger A; Kaiser V; Müller-Putz GR; Rupp R
    Artif Intell Med; 2013 Oct; 59(2):133-42. PubMed ID: 24064256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuromuscular electrical stimulation induced brain patterns to decode motor imagery.
    Vidaurre C; Pascual J; Ramos-Murguialday A; Lorenz R; Blankertz B; Birbaumer N; Müller KR
    Clin Neurophysiol; 2013 Sep; 124(9):1824-34. PubMed ID: 23642833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A brain-computer interface with vibrotactile biofeedback for haptic information.
    Chatterjee A; Aggarwal V; Ramos A; Acharya S; Thakor NV
    J Neuroeng Rehabil; 2007 Oct; 4():40. PubMed ID: 17941986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensory threshold neuromuscular electrical stimulation fosters motor imagery performance.
    Corbet T; Iturrate I; Pereira M; Perdikis S; Millán JDR
    Neuroimage; 2018 Aug; 176():268-276. PubMed ID: 29689307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Randomized Controlled Trial of EEG-Based Motor Imagery Brain-Computer Interface Robotic Rehabilitation for Stroke.
    Ang KK; Chua KS; Phua KS; Wang C; Chin ZY; Kuah CW; Low W; Guan C
    Clin EEG Neurosci; 2015 Oct; 46(4):310-20. PubMed ID: 24756025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of motor imagery brain-computer interface based on anodal transcranial direct current stimulation modulation.
    Wei P; He W; Zhou Y; Wang L
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):404-15. PubMed ID: 23475381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcranial magnetic stimulation for individual identification of the best electrode position for a motor imagery-based brain-computer interface.
    Hänselmann S; Schneiders M; Weidner N; Rupp R
    J Neuroeng Rehabil; 2015 Aug; 12():71. PubMed ID: 26303933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speaking and cognitive distractions during EEG-based brain control of a virtual neuroprosthesis-arm.
    Foldes ST; Taylor DM
    J Neuroeng Rehabil; 2013 Dec; 10():116. PubMed ID: 24359452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEG-based neuroprosthesis control: a step towards clinical practice.
    Müller-Putz GR; Scherer R; Pfurtscheller G; Rupp R
    Neurosci Lett; 2005 Jul 1-8; 382(1-2):169-74. PubMed ID: 15911143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing performance of a motor imagery based brain-computer interface by incorporating electrical stimulation-induced SSSEP.
    Yi W; Qiu S; Wang K; Qi H; Zhao X; He F; Zhou P; Yang J; Ming D
    J Neural Eng; 2017 Apr; 14(2):026002. PubMed ID: 28004644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Individually adapted imagery improves brain-computer interface performance in end-users with disability.
    Scherer R; Faller J; Friedrich EV; Opisso E; Costa U; Kübler A; Müller-Putz GR
    PLoS One; 2015; 10(5):e0123727. PubMed ID: 25992718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards Efficient Decoding of Multiple Classes of Motor Imagery Limb Movements Based on EEG Spectral and Time Domain Descriptors.
    Samuel OW; Geng Y; Li X; Li G
    J Med Syst; 2017 Oct; 41(12):194. PubMed ID: 29080913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing sensorimotor BCI performance with assistive afferent activity: An online evaluation.
    Vidaurre C; Ramos Murguialday A; Haufe S; Gómez M; Müller KR; Nikulin VV
    Neuroimage; 2019 Oct; 199():375-386. PubMed ID: 31158476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An EMG-controlled neuroprosthesis for daily upper limb support: a preliminary study.
    Ambrosini E; Ferrante S; Tibiletti M; Schauer T; Klauer C; Ferrigno G; Pedrocchi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4259-62. PubMed ID: 22255280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a holistic assessment of the user experience with hybrid BCIs.
    Lorenz R; Pascual J; Blankertz B; Vidaurre C
    J Neural Eng; 2014 Jun; 11(3):035007. PubMed ID: 24835132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term evaluation of a 4-class imagery-based brain-computer interface.
    Friedrich EV; Scherer R; Neuper C
    Clin Neurophysiol; 2013 May; 124(5):916-27. PubMed ID: 23290926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel motor imagery hybrid brain computer interface using EEG and functional transcranial Doppler ultrasound.
    Khalaf A; Sejdic E; Akcakaya M
    J Neurosci Methods; 2019 Feb; 313():44-53. PubMed ID: 30590086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.