These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 23366624)
21. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis. Vourvopoulos A; Bermúdez I Badia S J Neuroeng Rehabil; 2016 Aug; 13(1):69. PubMed ID: 27503007 [TBL] [Abstract][Full Text] [Related]
22. A novel Morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design. Jiang J; Zhou Z; Yin E; Yu Y; Liu Y; Hu D Comput Biol Med; 2015 Nov; 66():11-9. PubMed ID: 26340647 [TBL] [Abstract][Full Text] [Related]
23. [Brain-computer interface-based motor imagery training for patients with neurological movement disorders]. Liburkina SP; Vasilyev AN; Kaplan AY; Ivanova GE; Chukanova AS Zh Nevrol Psikhiatr Im S S Korsakova; 2018; 118(9. Vyp. 2):63-68. PubMed ID: 30499562 [TBL] [Abstract][Full Text] [Related]
24. Functional recovery in upper limb function in stroke survivors by using brain-computer interface A single case A-B-A-B design. Ono T; Mukaino M; Ushiba J Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():265-8. PubMed ID: 24109675 [TBL] [Abstract][Full Text] [Related]
25. EEG-based Brain-Computer Interface to support post-stroke motor rehabilitation of the upper limb. Cincotti F; Pichiorri F; Aricò P; Aloise F; Leotta F; de Vico Fallani F; Millán Jdel R; Molinari M; Mattia D Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4112-5. PubMed ID: 23366832 [TBL] [Abstract][Full Text] [Related]
26. Development of a Wearable Motor-Imagery-Based Brain-Computer Interface. Lin BS; Pan JS; Chu TY; Lin BS J Med Syst; 2016 Mar; 40(3):71. PubMed ID: 26748791 [TBL] [Abstract][Full Text] [Related]
27. On the feasibility of using motor imagery EEG-based brain-computer interface in chronic tetraplegics for assistive robotic arm control: a clinical test and long-term post-trial follow-up. Onose G; Grozea C; Anghelescu A; Daia C; Sinescu CJ; Ciurea AV; Spircu T; Mirea A; Andone I; Spânu A; Popescu C; Mihăescu AS; Fazli S; Danóczy M; Popescu F Spinal Cord; 2012 Aug; 50(8):599-608. PubMed ID: 22410845 [TBL] [Abstract][Full Text] [Related]
28. Effects of Continuous Kinaesthetic Feedback Based on Tendon Vibration on Motor Imagery BCI Performance. Barsotti M; Leonardis D; Vanello N; Bergamasco M; Frisoli A IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):105-114. PubMed ID: 28809705 [TBL] [Abstract][Full Text] [Related]
29. A clinical study of motor imagery-based brain-computer interface for upper limb robotic rehabilitation. Ang KK; Guan C; Chua KS; Ang BT; Kuah C; Wang C; Phua KS; Chin ZY; Zhang H Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5981-4. PubMed ID: 19965253 [TBL] [Abstract][Full Text] [Related]
30. EEG-based control of a hand grasp neuroprosthesis. Lauer RT; Peckham PH; Kilgore KL Neuroreport; 1999 Jun; 10(8):1767-71. PubMed ID: 10501572 [TBL] [Abstract][Full Text] [Related]
31. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG. Kaiser V; Bauernfeind G; Kreilinger A; Kaufmann T; Kübler A; Neuper C; Müller-Putz GR Neuroimage; 2014 Jan; 85 Pt 1():432-44. PubMed ID: 23651839 [TBL] [Abstract][Full Text] [Related]
32. Transcranial direct current stimulation and EEG-based motor imagery BCI for upper limb stroke rehabilitation. Ang KK; Guan C; Phua KS; Wang C; Teh I; Chen CW; Chew E Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4128-31. PubMed ID: 23366836 [TBL] [Abstract][Full Text] [Related]
33. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery. Koo B; Lee HG; Nam Y; Kang H; Koh CS; Shin HC; Choi S J Neurosci Methods; 2015 Apr; 244():26-32. PubMed ID: 24797225 [TBL] [Abstract][Full Text] [Related]
34. Prediction of motor imagery based brain computer interface performance using a reaction time test. Darvishi S; Abbott D; Baumert M Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2880-3. PubMed ID: 26736893 [TBL] [Abstract][Full Text] [Related]
35. Towards increasing the number of commands in a hybrid brain-computer interface with combination of gaze and motor imagery. Meena YK; Cecotti H; KongFatt Wong-Lin ; Prasad G Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():506-9. PubMed ID: 26736310 [TBL] [Abstract][Full Text] [Related]
36. Neurofeedback-based motor imagery training for brain-computer interface (BCI). Hwang HJ; Kwon K; Im CH J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521 [TBL] [Abstract][Full Text] [Related]
37. The predictive role of pre-cue EEG rhythms on MI-based BCI classification performance. Bamdadian A; Guan C; Ang KK; Xu J J Neurosci Methods; 2014 Sep; 235():138-44. PubMed ID: 24979726 [TBL] [Abstract][Full Text] [Related]
38. [Lateralization of EEG Patterns in Humans during Motor Imagery of Arm Movements in the Brain-Computer Interface]. Vasilyev AN; Liburkina SP; Kaplan AY Zh Vyssh Nerv Deiat Im I P Pavlova; 2016 May; 66(3):302-312. PubMed ID: 30695412 [TBL] [Abstract][Full Text] [Related]
39. Noninvasive Electroencephalogram Based Control of a Robotic Arm for Writing Task Using Hybrid BCI System. Gao Q; Dou L; Belkacem AN; Chen C Biomed Res Int; 2017; 2017():8316485. PubMed ID: 28660211 [TBL] [Abstract][Full Text] [Related]
40. A myocontrolled neuroprosthesis integrated with a passive exoskeleton to support upper limb activities. Ambrosini E; Ferrante S; Schauer T; Klauer C; Gaffuri M; Ferrigno G; Pedrocchi A J Electromyogr Kinesiol; 2014 Apr; 24(2):307-17. PubMed ID: 24529798 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]