These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 23366625)

  • 41. Adaptive multi-degree of freedom Brain Computer Interface using online feedback: Towards novel methods and metrics of mutual adaptation between humans and machines for BCI.
    Nguyen CH; Karavas GK; Artemiadis P
    PLoS One; 2019; 14(3):e0212620. PubMed ID: 30840712
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface.
    Siuly ; Li Y; Paul Wen P
    Comput Methods Programs Biomed; 2014 Mar; 113(3):767-80. PubMed ID: 24440135
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantitative evaluation of a low-cost noninvasive hybrid interface based on EEG and eye movement.
    Kim M; Kim BH; Jo S
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):159-68. PubMed ID: 25376041
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A passive BCI for monitoring the intentionality of the gaze-based moving object selection.
    Zhao DG; Vasilyev AN; Kozyrskiy BL; Melnichuk EV; Isachenko AV; Velichkovsky BM; Shishkin SL
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33418554
    [No Abstract]   [Full Text] [Related]  

  • 45. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
    Lawhern VJ; Solon AJ; Waytowich NR; Gordon SM; Hung CP; Lance BJ
    J Neural Eng; 2018 Oct; 15(5):056013. PubMed ID: 29932424
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Direct comparison of supervised and semi-supervised retraining approaches for co-adaptive BCIs.
    Schwarz A; Brandstetter J; Pereira J; Müller-Putz GR
    Med Biol Eng Comput; 2019 Nov; 57(11):2347-2357. PubMed ID: 31522355
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Towards development of a 3-state self-paced brain-computer interface.
    Bashashati A; Ward RK; Birch GE
    Comput Intell Neurosci; 2007; 2007():84386. PubMed ID: 18288260
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pairwise and variance based signal compression algorithm (PVBSC) in the P300 based speller systems using EEG signals.
    Arican M; Polat K
    Comput Methods Programs Biomed; 2019 Jul; 176():149-157. PubMed ID: 31200902
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Adaptive estimation of hand movement trajectory in an EEG based brain-computer interface system.
    Robinson N; Guan C; Vinod AP
    J Neural Eng; 2015 Dec; 12(6):066019. PubMed ID: 26501230
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Towards psychologically adaptive brain-computer interfaces.
    Myrden A; Chau T
    J Neural Eng; 2016 Dec; 13(6):066022. PubMed ID: 27841163
    [TBL] [Abstract][Full Text] [Related]  

  • 52. EEG-Based BCI System Using Adaptive Features Extraction and Classification Procedures.
    Mondini V; Mangia AL; Cappello A
    Comput Intell Neurosci; 2016; 2016():4562601. PubMed ID: 27635129
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparing Different Classifiers in Sensory Motor Brain Computer Interfaces.
    Bashashati H; Ward RK; Birch GE; Bashashati A
    PLoS One; 2015; 10(6):e0129435. PubMed ID: 26090799
    [TBL] [Abstract][Full Text] [Related]  

  • 54. EEG source space analysis of the supervised factor analytic approach for the classification of multi-directional arm movement.
    Shenoy Handiru V; Vinod AP; Guan C
    J Neural Eng; 2017 Aug; 14(4):046008. PubMed ID: 28516901
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of Single-Channel Hybrid BCI System Using Motor Imagery and SSVEP.
    Ko LW; Ranga SSK; Komarov O; Chen CC
    J Healthc Eng; 2017; 2017():3789386. PubMed ID: 29065590
    [TBL] [Abstract][Full Text] [Related]  

  • 56. EOG-Based Human-Computer Interface: 2000-2020 Review.
    Belkhiria C; Boudir A; Hurter C; Peysakhovich V
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808414
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Unsupervised adaptation of an ECoG based brain-computer interface using neural correlates of task performance.
    Rouanne V; Costecalde T; Benabid AL; Aksenova T
    Sci Rep; 2022 Dec; 12(1):21316. PubMed ID: 36494390
    [TBL] [Abstract][Full Text] [Related]  

  • 58. World's fastest brain-computer interface: Combining EEG2Code with deep learning.
    Nagel S; Spüler M
    PLoS One; 2019; 14(9):e0221909. PubMed ID: 31490999
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis.
    Blankertz B; Dornhege G; Schäfer C; Krepki R; Kohlmorgen J; Müller KR; Kunzmann V; Losch F; Curio G
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):127-31. PubMed ID: 12899253
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A high-speed brain-computer interface (BCI) using dry EEG electrodes.
    Spüler M
    PLoS One; 2017; 12(2):e0172400. PubMed ID: 28225794
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.