These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 23366626)

  • 1. Self-paced movement intention detection from human brain signals: Invasive and non-invasive EEG.
    Lew E; Chavarriaga R; Zhang H; Seeck M; Millan Jdel R
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3280-3. PubMed ID: 23366626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of self-paced reaching movement intention from EEG signals.
    Lew E; Chavarriaga R; Silvoni S; Millán Jdel R
    Front Neuroeng; 2012; 5():13. PubMed ID: 23055968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sitting and standing intention can be decoded from scalp EEG recorded prior to movement execution.
    Bulea TC; Prasad S; Kilicarslan A; Contreras-Vidal JL
    Front Neurosci; 2014; 8():376. PubMed ID: 25505377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A brain-computer interface for single-trial detection of gait initiation from movement related cortical potentials.
    Jiang N; Gizzi L; Mrachacz-Kersting N; Dremstrup K; Farina D
    Clin Neurophysiol; 2015 Jan; 126(1):154-9. PubMed ID: 24910150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of reaching intention using EEG signals and nonlinear dynamic system identification.
    Mirzaee MS; Moghimi S
    Comput Methods Programs Biomed; 2019 Jul; 175():151-161. PubMed ID: 31104704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting the Intention to Move Upper Limbs from Electroencephalographic Brain Signals.
    Gudiño-Mendoza B; Sanchez-Ante G; Antelis JM
    Comput Math Methods Med; 2016; 2016():3195373. PubMed ID: 27217826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining ENG and EEG integrated analysis for better sensitivity and specificity of neuroprosthesis operations.
    Rossini L; Rossini PM
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():134-7. PubMed ID: 21096741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates.
    López-Larraz E; Montesano L; Gil-Agudo Á; Minguez J
    J Neuroeng Rehabil; 2014 Nov; 11():153. PubMed ID: 25398273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting intention to execute the next movement while performing current movement from EEG using global optimal constrained ICA.
    Eilbeigi E; Setarehdan SK
    Comput Biol Med; 2018 Aug; 99():63-75. PubMed ID: 29890509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrode fusion for the prediction of self-initiated fine movements from single-trial readiness potentials.
    Abou Zeid E; Chau T
    Int J Neural Syst; 2015 Jun; 25(4):1550014. PubMed ID: 25903225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single trial prediction of self-paced reaching directions from EEG signals.
    Lew EY; Chavarriaga R; Silvoni S; Millán Jdel R
    Front Neurosci; 2014; 8():222. PubMed ID: 25136290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unsupervised movement onset detection from EEG recorded during self-paced real hand movement.
    Awwad Shiekh Hasan B; Gan JQ
    Med Biol Eng Comput; 2010 Mar; 48(3):245-53. PubMed ID: 19888613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Movement related activity in the high gamma range of the human EEG.
    Ball T; Demandt E; Mutschler I; Neitzel E; Mehring C; Vogt K; Aertsen A; Schulze-Bonhage A
    Neuroimage; 2008 Jun; 41(2):302-10. PubMed ID: 18424182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of movement intention by spatially filtered electromagnetic inverse solutions.
    Congedo M; Lotte F; Lécuyer A
    Phys Med Biol; 2006 Apr; 51(8):1971-89. PubMed ID: 16585840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Neural Architectures for Mapping Scalp to Intracranial EEG.
    Antoniades A; Spyrou L; Martin-Lopez D; Valentin A; Alarcon G; Sanei S; Took CC
    Int J Neural Syst; 2018 Oct; 28(8):1850009. PubMed ID: 29631503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of self-paced movement intention from pre-movement electroencephalogram signals with Hilbert transform.
    Hong Zeng ; Changcheng Wu ; Aiguo Song ; Baoguo Xu ; Huijun Li ; Pengcheng Wen ; Jia Liu
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2089-2092. PubMed ID: 29060308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of Weak Periodic Signals in the EEG Signals and Their Relationship With Postsynaptic Potentials.
    Akilli M; Yilmaz N
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):1918-1925. PubMed ID: 30176601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global optimal constrained ICA and its application in extraction of movement related cortical potentials from single-trial EEG signals.
    Eilbeigi E; Setarehdan SK
    Comput Methods Programs Biomed; 2018 Nov; 166():155-169. PubMed ID: 30415714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EEG neural correlates of goal-directed movement intention.
    Pereira J; Ofner P; Schwarz A; Sburlea AI; Müller-Putz GR
    Neuroimage; 2017 Apr; 149():129-140. PubMed ID: 28131888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploration of neural correlates of movement intention based on characterisation of temporal dependencies in electroencephalography.
    Wairagkar M; Hayashi Y; Nasuto SJ
    PLoS One; 2018; 13(3):e0193722. PubMed ID: 29509785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.