These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 23366645)
21. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot. Ao D; Song R; Gao J IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719 [TBL] [Abstract][Full Text] [Related]
22. [Preliminary study of robot-assisted ankle rehabilitation for children with cerebral palsy]. Wang RL; Zhou ZH; Xi YC; Wang QN; Wang NH; Huang Z Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):207-212. PubMed ID: 29643516 [TBL] [Abstract][Full Text] [Related]
23. A Robot-Driven Computational Model for Estimating Passive Ankle Torque With Subject-Specific Adaptation. Zhang M; Meng W; Davies TC; Zhang Y; Xie SQ IEEE Trans Biomed Eng; 2016 Apr; 63(4):814-21. PubMed ID: 26340767 [TBL] [Abstract][Full Text] [Related]
24. Biomechanical effects of robot assisted walking on knee joint kinematics and muscle activation pattern. Thangavel P; Vidhya S; Li J; Chew E; Bezerianos A; Yu H IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():252-257. PubMed ID: 28813827 [TBL] [Abstract][Full Text] [Related]
25. Robot-Aided Neurorehabilitation: A Pediatric Robot for Ankle Rehabilitation. Michmizos KP; Rossi S; Castelli E; Cappa P; Krebs HI IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1056-67. PubMed ID: 25769168 [TBL] [Abstract][Full Text] [Related]
26. [Kinematics analysis and scale optimization of four degree of freedom generalized spherical parallel mechanism for ankle joint rehabilitation]. Liu X; Zhang J; Liu C; Niu J; Qi K; Guo S Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Apr; 38(2):286-294. PubMed ID: 33913288 [TBL] [Abstract][Full Text] [Related]
27. Effects of robot-guided passive stretching and active movement training of ankle and mobility impairments in stroke. Waldman G; Yang CY; Ren Y; Liu L; Guo X; Harvey RL; Roth EJ; Zhang LQ NeuroRehabilitation; 2013; 32(3):625-34. PubMed ID: 23648617 [TBL] [Abstract][Full Text] [Related]
28. Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot. Ai Q; Zhu C; Zuo J; Meng W; Liu Q; Xie SQ; Yang M Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29283406 [TBL] [Abstract][Full Text] [Related]
29. Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation. Park YL; Chen BR; Pérez-Arancibia NO; Young D; Stirling L; Wood RJ; Goldfield EC; Nagpal R Bioinspir Biomim; 2014 Mar; 9(1):016007. PubMed ID: 24434598 [TBL] [Abstract][Full Text] [Related]
30. Screw theory based mathematical modeling and kinematic analysis of a novel ankle rehabilitation robot with a constrained 3-PSP mechanism topology. Liao Z; Yao L; Lu Z; Zhang J Int J Intell Robot Appl; 2018; 2(3):351-360. PubMed ID: 30294664 [TBL] [Abstract][Full Text] [Related]
31. A multi-degree-of-freedom reconfigurable ankle rehabilitation robot with adjustable workspace for post-stroke lower limb ankle rehabilitation. Meng Q; Liu G; Xu X; Meng Q; Qin L; Yu H Front Bioeng Biotechnol; 2023; 11():1323645. PubMed ID: 38076434 [No Abstract] [Full Text] [Related]
32. A Portable Passive Rehabilitation Robot for Upper-Extremity Functional Resistance Training. Washabaugh E; Guo J; Chang CK; Remy D; Krishnan C IEEE Trans Biomed Eng; 2019 Feb; 66(2):496-508. PubMed ID: 29993459 [TBL] [Abstract][Full Text] [Related]
33. Comparison of kinematic and EMG parameters between unassisted, fixed- and adaptive-stiffness robotic-assisted ankle movements in post-stroke subjects. Perez-Ibarra JC; Siqueira AAG IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():461-466. PubMed ID: 28813863 [TBL] [Abstract][Full Text] [Related]
34. Comparative analysis and quantitative evaluation of ankle-foot orthoses for foot drop in chronic hemiparetic patients. Zollo L; Zaccheddu N; Ciancio AL; Morrone M; Bravi M; Santacaterina F; Laineri Milazzo M; Guglielmelli E; Sterzi S Eur J Phys Rehabil Med; 2015 Apr; 51(2):185-96. PubMed ID: 25184801 [TBL] [Abstract][Full Text] [Related]
35. An in-vivo lateral ankle ligament strain behavior assessment technique for potential use in robot-assisted therapy. Zhang M; Zhang Y; Davies TC; Xie S Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4022-5. PubMed ID: 25570874 [TBL] [Abstract][Full Text] [Related]
36. Robot-guided ankle sensorimotor rehabilitation of patients with multiple sclerosis. Lee Y; Chen K; Ren Y; Son J; Cohen BA; Sliwa JA; Zhang LQ Mult Scler Relat Disord; 2017 Jan; 11():65-70. PubMed ID: 28104260 [TBL] [Abstract][Full Text] [Related]
37. Reviewing effectiveness of ankle assessment techniques for use in robot-assisted therapy. Zhang M; Davies TC; Zhang Y; Xie S J Rehabil Res Dev; 2014; 51(4):517-34. PubMed ID: 25144166 [TBL] [Abstract][Full Text] [Related]
38. Enhancing patient freedom in rehabilitation robotics using gaze-based intention detection. Novak D; Riener R IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650507. PubMed ID: 24187322 [TBL] [Abstract][Full Text] [Related]
39. Robotics in neuro-rehabilitation. Pignolo L J Rehabil Med; 2009 Nov; 41(12):955-60. PubMed ID: 19841823 [TBL] [Abstract][Full Text] [Related]
40. A universal ankle-foot prosthesis emulator for human locomotion experiments. Caputo JM; Collins SH J Biomech Eng; 2014 Mar; 136(3):035002. PubMed ID: 24337103 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]