These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 23366700)
1. A simulation study: effect of the inter-electrode distance, electrode size and shape in transcutaneous electrical stimulation. Gomez-Tames JD; Gonzalez J; Yu W Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3576-9. PubMed ID: 23366700 [TBL] [Abstract][Full Text] [Related]
2. The influence of electrode size on selectivity and comfort in transcutaneous electrical stimulation of the forearm. Kuhn A; Keller T; Lawrence M; Morari M IEEE Trans Neural Syst Rehabil Eng; 2010 Jun; 18(3):255-62. PubMed ID: 20071267 [TBL] [Abstract][Full Text] [Related]
3. Effect of subcutaneous fat thickness and surface electrode configuration during neuromuscular electrical stimulation. Doheny EP; Caulfield BM; Minogue CM; Lowery MM Med Eng Phys; 2010 Jun; 32(5):468-74. PubMed ID: 20417145 [TBL] [Abstract][Full Text] [Related]
4. Array electrode design for transcutaneous electrical stimulation: a simulation study. Kuhn A; Keller T; Micera S; Morari M Med Eng Phys; 2009 Oct; 31(8):945-51. PubMed ID: 19540788 [TBL] [Abstract][Full Text] [Related]
5. The effect of subcutaneous fat thickness on the efficacy of transcutaneous electrical stimulation. Doheny EP; Caulfield BM; Minogue CM; Lowery MM Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5684-7. PubMed ID: 19164007 [TBL] [Abstract][Full Text] [Related]
6. Simulation of the three-dimensional electrical field in the course of functional electrical stimulation. Reichel M; Breyer T; Mayr W; Rattay F Artif Organs; 2002 Mar; 26(3):252-5. PubMed ID: 11940026 [TBL] [Abstract][Full Text] [Related]
7. Investigation of transcutaneous electrical nerve stimulation improvements with microneedle array electrodes based on multiphysics simulation. Soltanzadeh R; Afsharipour E; Shafai C Int J Numer Method Biomed Eng; 2020 Mar; 36(3):e3318. PubMed ID: 32017406 [TBL] [Abstract][Full Text] [Related]
8. New multi-channel transcutaneous electrical stimulation technology for rehabilitation. Keller T; Lawrence M; Kuhn A; Morari M Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():194-7. PubMed ID: 17946802 [TBL] [Abstract][Full Text] [Related]
9. Electrical current density model from surface electrodes. Waugaman WA Biomed Sci Instrum; 1997; 34():131-6. PubMed ID: 9603026 [TBL] [Abstract][Full Text] [Related]
10. Increased preferential activation of small cutaneous nerve fibers by optimization of electrode design parameters. Poulsen AH; Tigerholm J; Andersen OK; Mørch CD J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33291093 [No Abstract] [Full Text] [Related]
11. A model for transcutaneous current stimulation: simulations and experiments. Kuhn A; Keller T; Lawrence M; Morari M Med Biol Eng Comput; 2009 Mar; 47(3):279-89. PubMed ID: 19005714 [TBL] [Abstract][Full Text] [Related]
12. Advances in selective activation of muscles for non-invasive motor neuroprostheses. Koutsou AD; Moreno JC; Del Ama AJ; Rocon E; Pons JL J Neuroeng Rehabil; 2016 Jun; 13(1):56. PubMed ID: 27296478 [TBL] [Abstract][Full Text] [Related]
13. Preferential activation of small cutaneous fibers through small pin electrode also depends on the shape of a long duration electrical current. Hugosdottir R; Mørch CD; Andersen OK; Helgason T; Arendt-Nielsen L BMC Neurosci; 2019 Sep; 20(1):48. PubMed ID: 31521103 [TBL] [Abstract][Full Text] [Related]
15. Transcutaneous neuromuscular electrical stimulation effect on the degree of microvascular perfusion in autonomically denervated rat skeletal muscle. Clemente FR; Barron KW Arch Phys Med Rehabil; 1996 Feb; 77(2):155-60. PubMed ID: 8607739 [TBL] [Abstract][Full Text] [Related]
16. Verification of the finite element method to model subthreshold electrical current density in saline. Waugaman WA Biomed Sci Instrum; 1999; 35():367-72. PubMed ID: 11143379 [TBL] [Abstract][Full Text] [Related]