These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 23366786)

  • 1. Reducing muscle effort in walking through powered exoskeletons.
    Lenzi T; Zanotto D; Stegall P; Carrozza MC; Agrawal SK
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3926-9. PubMed ID: 23366786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Powered hip exoskeletons can reduce the user's hip and ankle muscle activations during walking.
    Lenzi T; Carrozza MC; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):938-48. PubMed ID: 23529105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive Simulation of Human Walking Augmented by a Powered Ankle Exoskeleton.
    Nguyen VQ; Umberger BR; Sup FC
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():53-58. PubMed ID: 31374606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanics and energetics of incline walking with robotic ankle exoskeletons.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):32-41. PubMed ID: 19088208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Design and Implementation of a Neuromuscular Controller on a Hip Exoskeleton for Partial Gait Assistance.
    Messara S; Manzoori AR; Di Russo A; Ijspeert A; Bouri M
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation to walking with an exoskeleton that assists ankle extension.
    Galle S; Malcolm P; Derave W; De Clercq D
    Gait Posture; 2013 Jul; 38(3):495-9. PubMed ID: 23465319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gastrocnemius myoelectric control of a robotic hip exoskeleton.
    Grazi L; Crea S; Parri A; Yan T; Cortese M; Giovacchini F; Cempini M; Pasquini G; Micera S; Vitiello N
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3881-4. PubMed ID: 26737141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Neuromuscular-Model Based Control Strategy to Minimize Muscle Effort in Assistive Exoskeletons.
    Mghames S; Santina CD; Garabini M; Bicchi A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():963-970. PubMed ID: 31374754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preliminary assessment of a lower-limb exoskeleton controller for guiding leg movement in overground walking.
    Martinez A; Lawson B; Goldfarb M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():375-380. PubMed ID: 28813848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heuristic-Based Ankle Exoskeleton Control for Co-Adaptive Assistance of Human Locomotion.
    Jackson RW; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2059-2069. PubMed ID: 31425120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an unpowered ankle exoskeleton for walking assist.
    Leclair J; Pardoel S; Helal A; Doumit M
    Disabil Rehabil Assist Technol; 2020 Jan; 15(1):1-13. PubMed ID: 30132353
    [No Abstract]   [Full Text] [Related]  

  • 16. Feedback-Error Learning for time-effective gait trajectory tracking in wearable exoskeletons.
    Figueiredo J; Fernandes PN; Moreno JC; Santos CP
    Anat Rec (Hoboken); 2023 Apr; 306(4):728-740. PubMed ID: 35869906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the effects of the Arm Light Exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects.
    Pirondini E; Coscia M; Marcheschi S; Roas G; Salsedo F; Frisoli A; Bergamasco M; Micera S
    J Neuroeng Rehabil; 2016 Jan; 13():9. PubMed ID: 26801620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uphill walking with a simple exoskeleton: plantarflexion assistance leads to proximal adaptations.
    Galle S; Malcolm P; Derave W; De Clercq D
    Gait Posture; 2015 Jan; 41(1):246-51. PubMed ID: 25455436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Spatiotemporal Patterns of the Spinal Muscle Coordination Output during Walking in the Exoskeleton.
    Zhvansky DS; Sylos-Labini F; Dewolf A; Cappellini G; d'Avella A; Lacquaniti F; Ivanenko Y
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning to walk with a robotic ankle exoskeleton.
    Gordon KE; Ferris DP
    J Biomech; 2007; 40(12):2636-44. PubMed ID: 17275829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.