BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 23366804)

  • 1. Segmentation of zebrafish embryonic images using a geometric atlas deformation.
    Zacharia E; Bondesson M; Gustafsson JÅ; Kakadiaris IA
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3998-4001. PubMed ID: 23366804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic segmentation of time-lapse microscopy images depicting a live Dharma embryo.
    Zacharia E; Bondesson M; Riu A; Ducharme NA; Gustafsson JÅ; Kakadiaris IA
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8082-5. PubMed ID: 22256217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probabilistic atlas and geometric variability estimation to drive tissue segmentation.
    Xu H; Thirion B; Allassonnière S
    Stat Med; 2014 Sep; 33(20):3576-99. PubMed ID: 24700632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the automatic segmentation of multiple organs at risk in CT images of lung cancer between deep convolutional neural network-based and atlas-based techniques.
    Zhu J; Zhang J; Qiu B; Liu Y; Liu X; Chen L
    Acta Oncol; 2019 Feb; 58(2):257-264. PubMed ID: 30398090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LEAP: learning embeddings for atlas propagation.
    Wolz R; Aljabar P; Hajnal JV; Hammers A; Rueckert D;
    Neuroimage; 2010 Jan; 49(2):1316-25. PubMed ID: 19815080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi-atlas based method for automated anatomical Macaca fascicularis brain MRI segmentation and PET kinetic extraction.
    Ballanger B; Tremblay L; Sgambato-Faure V; Beaudoin-Gobert M; Lavenne F; Le Bars D; Costes N
    Neuroimage; 2013 Aug; 77():26-43. PubMed ID: 23537938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localized-atlas-based segmentation of breast MRI in a decision-making framework.
    Fooladivanda A; Shokouhi SB; Ahmadinejad N
    Australas Phys Eng Sci Med; 2017 Mar; 40(1):69-84. PubMed ID: 28116639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of MRI-based atlases of non-human brains.
    Ullmann JF; Janke AL; Reutens D; Watson C
    J Comp Neurol; 2015 Feb; 523(3):391-405. PubMed ID: 25236843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cells segmentation from 3-D confocal images of early zebrafish embryogenesis.
    Zanella C; Campana M; Rizzi B; Melani C; Sanguinetti G; Bourgine P; Mikula K; Peyrieras N; Sarti A
    IEEE Trans Image Process; 2010 Mar; 19(3):770-81. PubMed ID: 19955038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of environmental chemicals that induce yolk malabsorption in zebrafish using automated image segmentation.
    Kalasekar SM; Zacharia E; Kessler N; Ducharme NA; Gustafsson JÅ; Kakadiaris IA; Bondesson M
    Reprod Toxicol; 2015 Aug; 55():20-9. PubMed ID: 25462786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resource atlases for multi-atlas brain segmentations with multiple ontology levels based on T1-weighted MRI.
    Wu D; Ma T; Ceritoglu C; Li Y; Chotiyanonta J; Hou Z; Hsu J; Xu X; Brown T; Miller MI; Mori S
    Neuroimage; 2016 Jan; 125():120-130. PubMed ID: 26499813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A segmentation protocol and MRI atlas of the C57BL/6J mouse neocortex.
    Ullmann JF; Watson C; Janke AL; Kurniawan ND; Reutens DC
    Neuroimage; 2013 Sep; 78():196-203. PubMed ID: 23587687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational quantification of fluorescent leukocyte numbers in zebrafish embryos.
    Ellett F; Lieschke GJ
    Methods Enzymol; 2012; 506():425-35. PubMed ID: 22341237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a universal MRI atlas of the prostate and prostate zones : Comparison of MRI vendor and image acquisition parameters.
    Padgett KR; Swallen A; Pirozzi S; Piper J; Chinea FM; Abramowitz MC; Nelson A; Pollack A; Stoyanova R
    Strahlenther Onkol; 2019 Feb; 195(2):121-130. PubMed ID: 30140944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
    Pipitone J; Park MT; Winterburn J; Lett TA; Lerch JP; Pruessner JC; Lepage M; Voineskos AN; Chakravarty MM;
    Neuroimage; 2014 Nov; 101():494-512. PubMed ID: 24784800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Automatic segmentation using atlases in head and neck cancers: Methodology].
    Ramus L; Thariat J; Marcy PY; Pointreau Y; Bera G; Commowick O; Malandain G
    Cancer Radiother; 2010 Jun; 14(3):206-12. PubMed ID: 20347608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward atlas-assisted automatic interpretation of MRI morphological brain scans in the presence of tumor.
    Nowinski WL; Belov D
    Acad Radiol; 2005 Aug; 12(8):1049-57. PubMed ID: 16087098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated analysis of zebrafish images for phenotypic changes in drug discovery.
    Chen S; Zhu Y; Xia W; Xia S; Xu X
    J Neurosci Methods; 2011 Sep; 200(2):229-36. PubMed ID: 21767568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The AGES-Reykjavik study atlases: Non-linear multi-spectral template and atlases for studies of the ageing brain.
    Forsberg L; Sigurdsson S; Fredriksson J; Egilsdottir A; Oskarsdottir B; Kjartansson O; van Buchem MA; Launer LJ; Gudnason V; Zijdenbos A
    Med Image Anal; 2017 Jul; 39():133-144. PubMed ID: 28501699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Object Segmentation and Ground Truth in 3D Embryonic Imaging.
    Rajasekaran B; Uriu K; Valentin G; Tinevez JY; Oates AC
    PLoS One; 2016; 11(6):e0150853. PubMed ID: 27332860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.