These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 23366831)

  • 21. Neural mechanisms of brain-computer interface control.
    Halder S; Agorastos D; Veit R; Hammer EM; Lee S; Varkuti B; Bogdan M; Rosenstiel W; Birbaumer N; Kübler A
    Neuroimage; 2011 Apr; 55(4):1779-90. PubMed ID: 21256234
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Actor-Critic architecture and simulator for goal-directed Brain-Machine Interfaces.
    Mahmoudi B; Principe JC; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3365-8. PubMed ID: 19963795
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clustering Neural Patterns in Kernel Reinforcement Learning Assists Fast Brain Control in Brain-Machine Interfaces.
    Zhang X; Libedinsky C; So R; Principe JC; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1684-1694. PubMed ID: 31403433
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Maximum correntropy based attention-gated reinforcement learning designed for brain machine interface.
    Hongbao Li ; Fang Wang ; Qiaosheng Zhang ; Shaomin Zhang ; Yiwen Wang ; Xiaoxiang Zheng ; Principe JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3056-3059. PubMed ID: 28268956
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reinforcement learning of motor skills with policy gradients.
    Peters J; Schaal S
    Neural Netw; 2008 May; 21(4):682-97. PubMed ID: 18482830
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural Control of a Tracking Task via Attention-Gated Reinforcement Learning for Brain-Machine Interfaces.
    Wang Y; Wang F; Xu K; Zhang Q; Zhang S; Zheng X
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):458-67. PubMed ID: 25073173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impedance learning for robotic contact tasks using natural actor-critic algorithm.
    Kim B; Park J; Park S; Kang S
    IEEE Trans Syst Man Cybern B Cybern; 2010 Apr; 40(2):433-43. PubMed ID: 19696001
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Trajectory Decoding of Arm Reaching Movement Imageries for Brain-Controlled Robot Arm System.
    Jeong JH; Shim KH; Kim DJ; Lee SW
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5544-5547. PubMed ID: 31947110
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A study on a robot arm driven by three-dimensional trajectories predicted from non-invasive neural signals.
    Kim YJ; Park SW; Yeom HG; Bang MS; Kim JS; Chung CK; Kim S
    Biomed Eng Online; 2015 Aug; 14():81. PubMed ID: 26290069
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combining brain-computer interfaces with deep reinforcement learning for robot training: a feasibility study in a simulation environment.
    Vukelić M; Bui M; Vorreuther A; Lingelbach K
    Front Neuroergon; 2023; 4():1274730. PubMed ID: 38234482
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rhesus monkeys learn to control a directional-key inspired brain machine interface via bio-feedback.
    Zhang C; Wang H; Tang S; Li Z
    PLoS One; 2024; 19(1):e0286742. PubMed ID: 38232123
    [TBL] [Abstract][Full Text] [Related]  

  • 33. State-space Model Based Inverse Reinforcement Learning for Reward Function Estimation in Brain-machine Interfaces.
    Tan J; Zhang X; Wu S; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083150
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptive Quadruped Balance Control for Dynamic Environments Using Maximum-Entropy Reinforcement Learning.
    Sun H; Fu T; Ling Y; He C
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502796
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Embedded human control of robots using myoelectric interfaces.
    Antuvan CW; Ison M; Artemiadis P
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):820-7. PubMed ID: 24760930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Near Perfect Neural Critic from Motor Cortical Activity Toward an Autonomously Updating Brain Machine Interface.
    An J; Yadav T; Ahmadi MB; Tarigoppula VSA; Francis JT
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():73-76. PubMed ID: 30440344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuronal tuning in a brain-machine interface during Reinforcement Learning.
    Mahmoudi B; Digiovanna J; Principe JC; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4491-4. PubMed ID: 19163713
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assisting versus repelling force-feedback for learning of a line following task in a wheelchair.
    Chen X; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):959-68. PubMed ID: 23475377
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuroprosthetic Decoder Training as Imitation Learning.
    Merel J; Carlson D; Paninski L; Cunningham JP
    PLoS Comput Biol; 2016 May; 12(5):e1004948. PubMed ID: 27191387
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Human-Robot Co-Manipulation Approach Based on Human Sensorimotor Information.
    Peternel L; Tsagarakis N; Ajoudani A
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):811-822. PubMed ID: 28436880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.