These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 23366838)

  • 1. Quantification of uncertainties in brain tissue conductivity in a heterogeneous model of deep brain stimulation using a non-intrusive projection approach.
    Schmidt C; van Rienen U
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4136-9. PubMed ID: 23366838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of uncertainties in the material properties of brain tissue on the probabilistic volume of tissue activated.
    Schmidt C; Grant P; Lowery M; van Rienen U
    IEEE Trans Biomed Eng; 2013 May; 60(5):1378-87. PubMed ID: 23269746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the field distribution in deep brain stimulation: the influence of anisotropy of brain tissue.
    Schmidt C; van Rienen U
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1583-92. PubMed ID: 22410323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of heterogeneous and anisotropic tissue conductivity on electric field distribution in deep brain stimulation.
    Aström M; Lemaire JJ; Wårdell K
    Med Biol Eng Comput; 2012 Jan; 50(1):23-32. PubMed ID: 22101515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explaining clinical effects of deep brain stimulation through simplified target-specific modeling of the volume of activated tissue.
    Mädler B; Coenen VA
    AJNR Am J Neuroradiol; 2012 Jun; 33(6):1072-80. PubMed ID: 22300931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncertainty Quantification of Oscillation Suppression During DBS in a Coupled Finite Element and Network Model.
    Schmidt C; Dunn E; Lowery M; van Rienen U
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):281-290. PubMed ID: 28113673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of cystic cavities on deep brain stimulation in the basal ganglia: a simulation-based study.
    Aström M; Johansson JD; Hariz MI; Eriksson O; Wårdell K
    J Neural Eng; 2006 Jun; 3(2):132-8. PubMed ID: 16705269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the electrical double layer and dispersive tissue properties in a volume conduction model of deep brain stimulation.
    Grant PF; Lowery MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6497-500. PubMed ID: 19964442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue.
    Gabran SR; Saad JH; Salama MM; Mansour RR
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6485-8. PubMed ID: 19964439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the effects of deep brain stimulation with diffusion tensor based electric field models.
    Butson CR; Cooper SE; Henderson JM; McIntyre CC
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):429-37. PubMed ID: 17354801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sources and effects of electrode impedance during deep brain stimulation.
    Butson CR; Maks CB; McIntyre CC
    Clin Neurophysiol; 2006 Feb; 117(2):447-54. PubMed ID: 16376143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric field distribution in a finite-volume head model of deep brain stimulation.
    Grant PF; Lowery MM
    Med Eng Phys; 2009 Nov; 31(9):1095-103. PubMed ID: 19656716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the implanted pulse generator as reference electrode in finite element model of monopolar deep brain stimulation.
    Walckiers G; Fuchs B; Thiran JP; Mosig JR; Pollo C
    J Neurosci Methods; 2010 Jan; 186(1):90-6. PubMed ID: 19895845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of uncertain head tissue conductivity in the optimization of transcranial direct current stimulation for an auditory target.
    Schmidt C; Wagner S; Burger M; Rienen Uv; Wolters CH
    J Neural Eng; 2015 Aug; 12(4):046028. PubMed ID: 26170066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The New York Head-A precise standardized volume conductor model for EEG source localization and tES targeting.
    Huang Y; Parra LC; Haufe S
    Neuroimage; 2016 Oct; 140():150-62. PubMed ID: 26706450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between neural activation and electric field distribution during deep brain stimulation.
    Astrom M; Diczfalusy E; Martens H; Wardell K
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):664-672. PubMed ID: 25350910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delayed feedback control of collective synchrony: an approach to suppression of pathological brain rhythms.
    Rosenblum M; Pikovsky A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 1):041904. PubMed ID: 15600432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subthalamic nucleus deep brain stimulation: accurate axonal threshold prediction with diffusion tensor based electric field models.
    Chaturvedi A; Butson CR; Cooper SE; McIntyre CC
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1240-3. PubMed ID: 17946452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing deep brain stimulation parameter selection with detailed models of the electrode-tissue interface.
    McIntyre CC; Butson CR; Maks CB; Noecker AM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():893-5. PubMed ID: 17946871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of head tissue conductivity in forward and inverse magnetoencephalographic simulations using realistic head models.
    Van Uitert R; Johnson C; Zhukov L
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2129-37. PubMed ID: 15605860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.