These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 23366930)
1. Comparing adaptive algorithms to measure temporal gait parameters using lower body mounted inertial sensors. Patterson MR; Caulfield B Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4509-12. PubMed ID: 23366930 [TBL] [Abstract][Full Text] [Related]
2. Bilateral step length estimation using a single inertial measurement unit attached to the pelvis. Köse A; Cereatti A; Della Croce U J Neuroeng Rehabil; 2012 Feb; 9():9. PubMed ID: 22316235 [TBL] [Abstract][Full Text] [Related]
3. Drift removal for improving the accuracy of gait parameters using wearable sensor systems. Takeda R; Lisco G; Fujisawa T; Gastaldi L; Tohyama H; Tadano S Sensors (Basel); 2014 Dec; 14(12):23230-47. PubMed ID: 25490587 [TBL] [Abstract][Full Text] [Related]
4. Adaptive estimation of temporal gait parameters using body-worn gyroscopes. Greene BR; McGrath D; O'Donovan KJ; O'Neill R; Burns A; Caulfield B Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1296-9. PubMed ID: 21095922 [TBL] [Abstract][Full Text] [Related]
5. Accuracy, sensitivity and robustness of five different methods for the estimation of gait temporal parameters using a single inertial sensor mounted on the lower trunk. Trojaniello D; Cereatti A; Della Croce U Gait Posture; 2014 Sep; 40(4):487-92. PubMed ID: 25085660 [TBL] [Abstract][Full Text] [Related]
6. Estimation of traversed distance in level walking using a single inertial measurement unit attached to the waist. Kose A; Cereatti A; Della Croce U Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1125-8. PubMed ID: 22254512 [TBL] [Abstract][Full Text] [Related]
7. Gait posture estimation using wearable acceleration and gyro sensors. Takeda R; Tadano S; Natorigawa A; Todoh M; Yoshinari S J Biomech; 2009 Nov; 42(15):2486-94. PubMed ID: 19682694 [TBL] [Abstract][Full Text] [Related]
8. Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system. Liu K; Liu T; Shibata K; Inoue Y; Zheng R J Biomech; 2009 Dec; 42(16):2747-52. PubMed ID: 19748624 [TBL] [Abstract][Full Text] [Related]
9. The use of accelerometers and gyroscopes to estimate hip and knee angles on gait analysis. Alonge F; Cucco E; D'Ippolito F; Pulizzotto A Sensors (Basel); 2014 May; 14(5):8430-46. PubMed ID: 24828578 [TBL] [Abstract][Full Text] [Related]
10. Online tracking of the lower body joint angles using IMUs for gait rehabilitation. Joukov V; Karg M; Kulic D Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2310-3. PubMed ID: 25570450 [TBL] [Abstract][Full Text] [Related]
11. A comparison of algorithms for body-worn sensor-based spatiotemporal gait parameters to the GAITRite electronic walkway. Greene BR; Foran TG; McGrath D; Doheny EP; Burns A; Caulfield B J Appl Biomech; 2012 Jul; 28(3):349-55. PubMed ID: 22087019 [TBL] [Abstract][Full Text] [Related]
12. Gait event detection using inertial measurement units in people with transfemoral amputation: a comparative study. Simonetti E; Villa C; Bascou J; Vannozzi G; Bergamini E; Pillet H Med Biol Eng Comput; 2020 Mar; 58(3):461-470. PubMed ID: 31873834 [TBL] [Abstract][Full Text] [Related]
13. Assessment of Foot Trajectory for Human Gait Phase Detection Using Wireless Ultrasonic Sensor Network. Qi Y; Soh CB; Gunawan E; Low KS; Thomas R IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):88-97. PubMed ID: 25769165 [TBL] [Abstract][Full Text] [Related]
14. Timing estimation for gait in water from inertial sensor measurements: Analysis of the performance of 17 algorithms. Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S Comput Methods Programs Biomed; 2020 Dec; 197():105703. PubMed ID: 32818913 [TBL] [Abstract][Full Text] [Related]
15. Assessment of walking features from foot inertial sensing. Sabatini AM; Martelloni C; Scapellato S; Cavallo F IEEE Trans Biomed Eng; 2005 Mar; 52(3):486-94. PubMed ID: 15759579 [TBL] [Abstract][Full Text] [Related]
16. Gait analysis using wearable sensors. Tao W; Liu T; Zheng R; Feng H Sensors (Basel); 2012; 12(2):2255-83. PubMed ID: 22438763 [TBL] [Abstract][Full Text] [Related]
17. Gait analysis using floor markers and inertial sensors. Do TN; Suh YS Sensors (Basel); 2012; 12(2):1594-611. PubMed ID: 22438727 [TBL] [Abstract][Full Text] [Related]
18. [Reliability of the novel gait analysis system RehaWatch]. Schwesig R; Kauert R; Wust S; Becker S; Leuchte S Biomed Tech (Berl); 2010 Apr; 55(2):109-15. PubMed ID: 20367327 [TBL] [Abstract][Full Text] [Related]
19. A wireless trigger for synchronization of wearable sensors to external systems during recording of human gait. Kugler P; Schlarb H; Blinn J; Picard A; Eskofier B Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4537-40. PubMed ID: 23366937 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements. Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S Gait Posture; 2018 Oct; 66():76-82. PubMed ID: 30170137 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]