These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 23366944)
1. Development of a closed-loop feedback system for real-time control of a high-dimensional Brain Machine Interface. Putrino D; Wong YT; Vigeral M; Pesaran B Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4567-70. PubMed ID: 23366944 [TBL] [Abstract][Full Text] [Related]
2. Control of Redundant Kinematic Degrees of Freedom in a Closed-Loop Brain-Machine Interface. Moorman HG; Gowda S; Carmena JM IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):750-760. PubMed ID: 27455526 [TBL] [Abstract][Full Text] [Related]
3. Towards closed-loop decoding of dexterous hand movements using a virtual integration environment. Aggarwal V; Singhal G; He J; Schieber MH; Thakor NV Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1703-6. PubMed ID: 19163007 [TBL] [Abstract][Full Text] [Related]
4. A training platform for many-dimensional prosthetic devices using a virtual reality environment. Putrino D; Wong YT; Weiss A; Pesaran B J Neurosci Methods; 2015 Apr; 244():68-77. PubMed ID: 24726625 [TBL] [Abstract][Full Text] [Related]
5. Continuous decoding of intended movements with a hybrid kinetic and kinematic brain machine interface. Suminski AJ; Willett FR; Fagg AH; Bodenhamer M; Hatsopoulos NG Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5802-6. PubMed ID: 22255659 [TBL] [Abstract][Full Text] [Related]
6. Rhesus monkeys learn to control a directional-key inspired brain machine interface via bio-feedback. Zhang C; Wang H; Tang S; Li Z PLoS One; 2024; 19(1):e0286742. PubMed ID: 38232123 [TBL] [Abstract][Full Text] [Related]
7. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar. Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824 [TBL] [Abstract][Full Text] [Related]
9. A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Cunningham JP; Nuyujukian P; Gilja V; Chestek CA; Ryu SI; Shenoy KV J Neurophysiol; 2011 Apr; 105(4):1932-49. PubMed ID: 20943945 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies. Peikon ID; Fitzsimmons NA; Lebedev MA; Nicolelis MA J Neurosci Methods; 2009 Jun; 180(2):224-33. PubMed ID: 19464514 [TBL] [Abstract][Full Text] [Related]
11. Compensating for delays in brain-machine interfaces by decoding intended future movement. Willett FR; Suminski AJ; Fagg AH; Hatsopoulos NG Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4087-90. PubMed ID: 23366826 [TBL] [Abstract][Full Text] [Related]
12. Manipulation of visual biofeedback during gait with a time delayed adaptive Virtual Mirror Box. Barton GJ; De Asha AR; van Loon EC; Geijtenbeek T; Robinson MA J Neuroeng Rehabil; 2014 Jun; 11():101. PubMed ID: 24917329 [TBL] [Abstract][Full Text] [Related]
13. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves. Wendelken S; Page DM; Davis T; Wark HAC; Kluger DT; Duncan C; Warren DJ; Hutchinson DT; Clark GA J Neuroeng Rehabil; 2017 Nov; 14(1):121. PubMed ID: 29178940 [TBL] [Abstract][Full Text] [Related]
14. Real-time animation software for customized training to use motor prosthetic systems. Davoodi R; Loeb GE IEEE Trans Neural Syst Rehabil Eng; 2012 Mar; 20(2):134-42. PubMed ID: 22186964 [TBL] [Abstract][Full Text] [Related]
15. Utilizing movement synergies to improve decoding performance for a brain machine interface. Wong YT; Putrino D; Weiss A; Pesaran B Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():289-92. PubMed ID: 24109681 [TBL] [Abstract][Full Text] [Related]
16. Ten-dimensional anthropomorphic arm control in a human brain-machine interface: difficulties, solutions, and limitations. Wodlinger B; Downey JE; Tyler-Kabara EC; Schwartz AB; Boninger ML; Collinger JL J Neural Eng; 2015 Feb; 12(1):016011. PubMed ID: 25514320 [TBL] [Abstract][Full Text] [Related]
17. High-Density Electromyography and Motor Skill Learning for Robust Long-Term Control of a 7-DoF Robot Arm. Ison M; Vujaklija I; Whitsell B; Farina D; Artemiadis P IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):424-33. PubMed ID: 25838524 [TBL] [Abstract][Full Text] [Related]
18. Exploring time-scales of closed-loop decoder adaptation in brain-machine interfaces. Orsborn AL; Dangi S; Moorman HG; Carmena JM Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5436-9. PubMed ID: 22255567 [TBL] [Abstract][Full Text] [Related]