These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23366962)

  • 1. Estimation of force direction from functional near-infrared spectroscopy signals using sparse logistic regression.
    Sato T; Muto Y; Nambu I; Wada Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4639-42. PubMed ID: 23366962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal representation of arm force direction using fNIRS signals.
    Muto Y; Ishii T; Matsuzaki S; Wada Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7425-8. PubMed ID: 22256055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal feature selection from fNIRS signals using genetic algorithms for BCI.
    Noori FM; Naseer N; Qureshi NK; Nazeer H; Khan RA
    Neurosci Lett; 2017 Apr; 647():61-66. PubMed ID: 28336339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI.
    Gulraiz A; Naseer N; Nazeer H; Khan MJ; Khan RA; Shahbaz Khan U
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of motor execution using a hybrid fNIRS-biosignal BCI: a feasibility study.
    Zimmermann R; Marchal-Crespo L; Edelmann J; Lambercy O; Fluet MC; Riener R; Wolf M; Gassert R
    J Neuroeng Rehabil; 2013 Jan; 10():4. PubMed ID: 23336819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of motor imagery and execution signals with population-level feature sets: implications for probe design in fNIRS based BCI.
    Erdoĝan SB; Özsarfati E; Dilek B; Kadak KS; Hanoĝlu L; Akın A
    J Neural Eng; 2019 Apr; 16(2):026029. PubMed ID: 30634177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-trial reconstruction of finger-pinch forces from human motor-cortical activation measured by near-infrared spectroscopy (NIRS).
    Nambu I; Osu R; Sato MA; Ando S; Kawato M; Naito E
    Neuroimage; 2009 Aug; 47(2):628-37. PubMed ID: 19393320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subject-Specific feature selection for near infrared spectroscopy based brain-computer interfaces.
    Aydin EA
    Comput Methods Programs Biomed; 2020 Oct; 195():105535. PubMed ID: 32534382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Different Classification Techniques for Two-Class Functional Near-Infrared Spectroscopy-Based Brain-Computer Interface.
    Naseer N; Qureshi NK; Noori FM; Hong KS
    Comput Intell Neurosci; 2016; 2016():5480760. PubMed ID: 27725827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic schizophrenic discrimination on fNIRS by using complex brain network analysis and SVM.
    Song H; Chen L; Gao R; Bogdan IIM; Yang J; Wang S; Dong W; Quan W; Dang W; Yu X
    BMC Med Inform Decis Mak; 2017 Dec; 17(Suppl 3):166. PubMed ID: 29297320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Online binary decision decoding using functional near-infrared spectroscopy for the development of brain-computer interface.
    Naseer N; Hong MJ; Hong KS
    Exp Brain Res; 2014 Feb; 232(2):555-64. PubMed ID: 24258529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrimination of Two-Class Motor Imagery in a fNIRS Based Brain Computer Interface.
    Moslehi AH; Bagheri M; Ludwig AM; Davies TC
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4051-4054. PubMed ID: 33018888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. fNIRS-GANs: data augmentation using generative adversarial networks for classifying motor tasks from functional near-infrared spectroscopy.
    Nagasawa T; Sato T; Nambu I; Wada Y
    J Neural Eng; 2020 Feb; 17(1):016068. PubMed ID: 31945755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoding four different sound-categories in the auditory cortex using functional near-infrared spectroscopy.
    Hong KS; Santosa H
    Hear Res; 2016 Mar; 333():157-166. PubMed ID: 26828741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of prefrontal and motor cortex signals for three-class fNIRS-BCI.
    Hong KS; Naseer N; Kim YH
    Neurosci Lett; 2015 Feb; 587():87-92. PubMed ID: 25529197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of Individual Finger Movements from Right Hand Using fNIRS Signals.
    Khan H; Noori FM; Yazidi A; Uddin MZ; Khan MNA; Mirtaheri P
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks.
    Buccino AP; Keles HO; Omurtag A
    PLoS One; 2016; 11(1):e0146610. PubMed ID: 26730580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of functional near-infrared spectroscopy signals corresponding to the right- and left-wrist motor imagery for development of a brain-computer interface.
    Naseer N; Hong KS
    Neurosci Lett; 2013 Oct; 553():84-9. PubMed ID: 23973334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-trial classification of near-infrared spectroscopy signals arising from multiple cortical regions.
    Schudlo LC; Chau T
    Behav Brain Res; 2015 Sep; 290():131-42. PubMed ID: 25960315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.