BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23366997)

  • 1. A re-examination of the time constant of the oculomotor neural integrator in human.
    Khojasteh E; Bockisch CJ; Straumann D; Hegemann SC
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4780-3. PubMed ID: 23366997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A non-linear model of the neural integrator in oculomotor control.
    Chan WW; Galiana HL
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1156-9. PubMed ID: 18002167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The oculomotor neural integrator uses a behavior-related coordinate system.
    Crawford JD
    J Neurosci; 1994 Nov; 14(11 Pt 2):6911-23. PubMed ID: 7965087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of neural integrators in oculomotor systems: a systematic narrative literature review.
    Sanchez K; Rowe FJ
    Acta Ophthalmol; 2018 Mar; 96(2):e111-e118. PubMed ID: 27874249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous eye movements in goldfish: oculomotor integrator performance, plasticity, and dependence on visual feedback.
    Mensh BD; Aksay E; Lee DD; Seung HS; Tank DW
    Vision Res; 2004 Mar; 44(7):711-26. PubMed ID: 14751555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotational kinematics of the human vestibuloocular reflex. III. Listing's law.
    Misslisch H; Tweed D; Fetter M; Sievering D; Koenig E
    J Neurophysiol; 1994 Nov; 72(5):2490-502. PubMed ID: 7884474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oculomotor control: Listing's law and all that.
    Hepp K
    Curr Opin Neurobiol; 1994 Dec; 4(6):862-8. PubMed ID: 7888770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling three-dimensional velocity-to-position transformation in oculomotor control.
    Schnabolk C; Raphan T
    J Neurophysiol; 1994 Feb; 71(2):623-38. PubMed ID: 8176431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling eye-head coordination without pre-planning--a reflex-based approach.
    Haji-Abolhassani I; Guitton D; Galiana HL
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4583-6. PubMed ID: 23366948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing the kinematics of the oculomotor plant with tertiary eye positions and ocular counterroll.
    Klier EM; Meng H; Angelaki DE
    J Neurophysiol; 2011 Feb; 105(2):640-9. PubMed ID: 21106901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hypothesis of the uniqueness of the oculomotor neural integrator: direct experimental evidence in the cat.
    Godaux E; Cheron G
    J Physiol; 1996 Apr; 492 ( Pt 2)(Pt 2):517-27. PubMed ID: 9019547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing gaze control in three dimensions.
    Tweed D; Haslwanter T; Fetter M
    Science; 1998 Aug; 281(5381):1363-6. PubMed ID: 9721104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the nonlinear context dependency of the neural integrator in the vestibuloocular reflex.
    Chan WW; Galiana HL
    IEEE Trans Biomed Eng; 2008 Aug; 55(8):1946-55. PubMed ID: 18632357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A learning network model of the neural integrator of the oculomotor system.
    Arnold DB; Robinson DA
    Biol Cybern; 1991; 64(6):447-54. PubMed ID: 1863658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noncommutative control in the rotational vestibuloocular reflex.
    Tchelidze T; Hess BJ
    J Neurophysiol; 2008 Jan; 99(1):96-111. PubMed ID: 17989243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing models of the oculomotor velocity-to-position transformation.
    Tweed D; Misslisch H; Fetter M
    J Neurophysiol; 1994 Sep; 72(3):1425-9. PubMed ID: 7807223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disorders of eye movements.
    Zee DS; Leigh RJ
    Neurol Clin; 1983 Nov; 1(4):909-28. PubMed ID: 6390156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testing the common neural integrator hypothesis at the level of the individual abducens motoneurones in the alert cat.
    Godaux E; Cheron G
    J Physiol; 1993 Sep; 469():549-70. PubMed ID: 8271215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. I. Linear acceleration responses during off-vertical axis rotation.
    Angelaki DE; Hess BJ
    J Neurophysiol; 1996 Jun; 75(6):2405-24. PubMed ID: 8793753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mathematical analysis of the characteristics of the system connecting the cerebellar ventral paraflocculus and extraoculomotor nucleus of alert monkeys during upward ocular following responses.
    Yamamoto K; Kobayashi Y; Takemura A; Kawano K; Kawato M
    Neurosci Res; 2000 Dec; 38(4):425-35. PubMed ID: 11164569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.