These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 23367002)

  • 1. Evaluation of vision-based head-trackers for assistive devices.
    Guness SP; Deravi F; Sirlantzis K; Pepper MG; Sakel M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4804-7. PubMed ID: 23367002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An investigation on the feasibility of uncalibrated and unconstrained gaze tracking for human assistive applications by using head pose estimation.
    Cazzato D; Leo M; Distante C
    Sensors (Basel); 2014 May; 14(5):8363-79. PubMed ID: 24824369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical sensor position indicator for neonatal MEG.
    Urban E; Wakai RT
    IEEE Trans Biomed Eng; 2012 Jan; 59(1):255-62. PubMed ID: 22010142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motion tracking in narrow spaces: a structured light approach.
    Olesen OV; Paulsen RR; Højgaar L; Roed B; Larsen R
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):253-60. PubMed ID: 20879407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation and Evaluation of a 50 kHz, 28μs Motion-to-Pose Latency Head Tracking Instrument.
    Blate A; Whitton M; Singh M; Welch G; State A; Whitted T; Fuchs H
    IEEE Trans Vis Comput Graph; 2019 May; 25(5):1970-1980. PubMed ID: 30843843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel eye gaze tracking techniques under natural head movement.
    Zhu Z; Ji Q
    IEEE Trans Biomed Eng; 2007 Dec; 54(12):2246-60. PubMed ID: 18075041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo three-dimensional photoacoustic tomography of a whole mouse head.
    Song KH; Stoica G; Wang LV
    Opt Lett; 2006 Aug; 31(16):2453-5. PubMed ID: 16880853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fully automated calibration method for an optical see-through head-mounted operating microscope with variable zoom and focus.
    Figl M; Ede C; Hummel J; Wanschitz F; Ewers R; Bergmann H; Birkfellner W
    IEEE Trans Med Imaging; 2005 Nov; 24(11):1492-9. PubMed ID: 16279085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of prospective head motion correction with NMR field probes and an optical tracking system.
    Eschelbach M; Aghaeifar A; Bause J; Handwerker J; Anders J; Engel EM; Thielscher A; Scheffler K
    Magn Reson Med; 2019 Jan; 81(1):719-729. PubMed ID: 30058220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The design and implementation of a motion correction scheme for neurological PET.
    Bloomfield PM; Spinks TJ; Reed J; Schnorr L; Westrip AM; Livieratos L; Fulton R; Jones T
    Phys Med Biol; 2003 Apr; 48(8):959-78. PubMed ID: 12741495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Head movement compensation and multi-modal event detection in eye-tracking data for unconstrained head movements.
    Larsson L; Schwaller A; Nyström M; Stridh M
    J Neurosci Methods; 2016 Dec; 274():13-26. PubMed ID: 27693470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel registration method for image-guided neurosurgery system based on stereo vision.
    An Y; Wang M; Song Z
    Biomed Mater Eng; 2015; 26 Suppl 1():S967-73. PubMed ID: 26406100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A passive, camera-based head-tracking system for real-time, three-dimensional estimation of head position and orientation in rodents.
    Vanzella W; Grion N; Bertolini D; Perissinotto A; Gigante M; Zoccolan D
    J Neurophysiol; 2019 Dec; 122(6):2220-2242. PubMed ID: 31553687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time 3D visual tracking of laparoscopic instruments for robotized endoscope holder.
    Zhao Z
    Biomed Mater Eng; 2014; 24(6):2665-72. PubMed ID: 25226970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motion monitoring for cranial frameless stereotactic radiosurgery using video-based three-dimensional optical surface imaging.
    Li G; Ballangrud A; Kuo LC; Kang H; Kirov A; Lovelock M; Yamada Y; Mechalakos J; Amols H
    Med Phys; 2011 Jul; 38(7):3981-94. PubMed ID: 21858995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of tooth-click triggering and speech recognition in assistive technology for computer access.
    Simpson T; Gauthier M; Prochazka A
    Neurorehabil Neural Repair; 2010 Feb; 24(2):188-94. PubMed ID: 19679651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Arm Motion Tracking by Orientation-Based Fusion of Inertial Sensors and Kinect Using Unscented Kalman Filter.
    Atrsaei A; Salarieh H; Alasty A
    J Biomech Eng; 2016 Sep; 138(9):. PubMed ID: 27428461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Head Motion and Head Gesture-Based Robot Control: A Usability Study.
    Jackowski A; Gebhard M; Thietje R
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):161-170. PubMed ID: 29324407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Command detection and classification in tongue drive assistive technology.
    Sadeghian EB; Huo X; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5465-8. PubMed ID: 22255574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bronchoscope tracking without fiducial markers using ultra-tiny electromagnetic tracking system and its evaluation in different environments.
    Mori K; Deguchi D; Ishitani K; Kitasaka T; Suenaga Y; Hasegawa Y; Imaizumi K; Takabatake H
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):644-51. PubMed ID: 18044623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.