These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 23367026)

  • 1. A linear, time-invariant model for cancerous and normal breast tissue.
    Habibi M; Diep E
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4899-902. PubMed ID: 23367026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of noninvasive microwave characterization of breast tumors.
    Huo Y; Bansal R; Zhu Q
    IEEE Trans Biomed Eng; 2004 Jul; 51(7):1089-94. PubMed ID: 15248525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries.
    Lazebnik M; Popovic D; McCartney L; Watkins CB; Lindstrom MJ; Harter J; Sewall S; Ogilvie T; Magliocco A; Breslin TM; Temple W; Mew D; Booske JH; Okoniewski M; Hagness SC
    Phys Med Biol; 2007 Oct; 52(20):6093-115. PubMed ID: 17921574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of normal and cancerous lung tissues by electrical impendence tomography.
    Gao J; Yue S; Chen J; Wang H
    Biomed Mater Eng; 2014; 24(6):2229-41. PubMed ID: 25226922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition of healthy and cancerous breast cells: Sensing the differences by dielectric spectroscopy.
    Ambrico M; Lasalvia M; Ligonzo T; Ambrico PF; Perna G; Capozzi V
    Med Phys; 2020 Oct; 47(10):5373-5382. PubMed ID: 32750750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Frequency Acoustic Impedance Imaging of Cancer Cells.
    Fadhel MN; Berndl ES; Strohm EM; Kolios MC
    Ultrasound Med Biol; 2015 Oct; 41(10):2700-13. PubMed ID: 26166459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectric properties for non-invasive detection of normal, benign, and malignant breast tissues using microwave theories.
    Cheng Y; Fu M
    Thorac Cancer; 2018 Apr; 9(4):459-465. PubMed ID: 29465782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of electrical characteristics of biological tissue with electrical impedance spectroscopy.
    Yao J; Wang L; Liu K; Wu H; Wang H; Huang J; Li J
    Electrophoresis; 2020 Sep; 41(16-17):1425-1432. PubMed ID: 31863489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of mechanical properties of human trabecular bone by electrical measurements.
    Sierpowska J; Hakulinen MA; Töyräs J; Day JS; Weinans H; Jurvelin JS; Lappalainen R
    Physiol Meas; 2005 Apr; 26(2):S119-31. PubMed ID: 15798225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of visco-elastic properties of breast-tissue mimicking materials using diffusing wave spectroscopy.
    Devi CU; Bharat Chandran RS; Vasu RM; Sood AK
    J Biomed Opt; 2007; 12(3):034035. PubMed ID: 17614743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mathematical model for breast cancer lesion estimation: electrical impedance technique using TS2000 commercial system.
    Seo JK; Kwon O; Ammari H; Woo EJ
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):1898-906. PubMed ID: 15536891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioimpedance analysis for the characterization of breast cancer cells in suspension.
    Guofeng Qiao ; Wei Wang ; Wei Duan ; Fan Zheng ; Sinclair AJ; Chatwin CR
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2321-9. PubMed ID: 22692870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for in vivo detection of abnormal subepidermal tissues based on dielectric properties.
    Zhang L; Liu P; Dong X; Zhou D; Shi X
    Biomed Mater Eng; 2014; 24(6):3455-62. PubMed ID: 25227057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving breast cancer risk stratification using resonance-frequency electrical impedance spectroscopy through fusion of multiple classifiers.
    Lederman D; Zheng B; Wang X; Wang XH; Gur D
    Ann Biomed Eng; 2011 Mar; 39(3):931-45. PubMed ID: 21116847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of electrical and thermal properties on RF ablation of breast cancer: is the tumour preferentially heated?
    Ekstrand V; Wiksell H; Schultz I; Sandstedt B; Rotstein S; Eriksson A
    Biomed Eng Online; 2005 Jul; 4():41. PubMed ID: 16008834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue characterization using electrical impedance spectroscopy data: a linear algebra approach.
    Laufer S; Solomon SB; Rubinsky B
    Physiol Meas; 2012 Jun; 33(6):997-1013. PubMed ID: 22561199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing breast cancer tissues through the spectral correlation properties of polarized fluorescence.
    Gharekhan AH; Arora S; Mayya KB; Panigrahi PK; Sureshkumar MB; Pradhan A
    J Biomed Opt; 2008; 13(5):054063. PubMed ID: 19021441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional time-domain inverse scattering for quantitative analysis of breast composition.
    Johnson JE; Takenaka T; Tanaka T
    IEEE Trans Biomed Eng; 2008 Aug; 55(8):1941-5. PubMed ID: 18632356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dielectric Properties for Differentiating Normal and Malignant Thyroid Tissues.
    Cheng Y; Fu M
    Med Sci Monit; 2018 Mar; 24():1276-1281. PubMed ID: 29499032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy.
    Taroni P; Pifferi A; Quarto G; Spinelli L; Torricelli A; Abbate F; Villa A; Balestreri N; Menna S; Cassano E; Cubeddu R
    J Biomed Opt; 2010; 15(6):060501. PubMed ID: 21198142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.