These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23367037)

  • 1. Detection of neovascularization in the optic disc using an AM-FM representation, granulometry, and vessel segmentation.
    Agurto C; Yu H; Murray V; Pattichis MS; Barriga S; Bauman W; Soliz P
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4946-9. PubMed ID: 23367037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multiscale decomposition approach to detect abnormal vasculature in the optic disc.
    Agurto C; Yu H; Murray V; Pattichis MS; Nemeth S; Barriga S; Soliz P
    Comput Med Imaging Graph; 2015 Jul; 43():137-49. PubMed ID: 25698545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundus optic disc localization and segmentation method based on phase congruency.
    Geng L; Shao YT; Xiao ZT; Zhang F; Wu J; Li M; Shan CY
    Biomed Mater Eng; 2014; 24(6):3223-9. PubMed ID: 25227031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated detection of optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation.
    Mookiah MR; Acharya UR; Chua CK; Min LC; Ng EY; Mushrif MM; Laude A
    Proc Inst Mech Eng H; 2013 Jan; 227(1):37-49. PubMed ID: 23516954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images.
    Köse C; Sevik U; Ikibaş C; Erdöl H
    Comput Methods Programs Biomed; 2012 Aug; 107(2):274-93. PubMed ID: 21757250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning Based Automatic Neovascularization Detection on Optic Disc Region.
    Yu S; Xiao D; Kanagasingam Y
    IEEE J Biomed Health Inform; 2018 May; 22(3):886-894. PubMed ID: 29727291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optic disc detection from normalized digital fundus images by means of a vessels' direction matched filter.
    Youssif AR; Ghalwash AZ; Ghoneim AR
    IEEE Trans Med Imaging; 2008 Jan; 27(1):11-8. PubMed ID: 18270057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method to assist in the diagnosis of early diabetic retinopathy: Image processing applied to detection of microaneurysms in fundus images.
    Rosas-Romero R; Martínez-Carballido J; Hernández-Capistrán J; Uribe-Valencia LJ
    Comput Med Imaging Graph; 2015 Sep; 44():41-53. PubMed ID: 26245720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved gradient vector flow algorithm for optic disc segmentation.
    Zhou H; Schaefer G; Liu T; Lin F
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4793-6. PubMed ID: 21097291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast detection of the optic disc and fovea in color fundus photographs.
    Niemeijer M; Abràmoff MD; van Ginneken B
    Med Image Anal; 2009 Dec; 13(6):859-70. PubMed ID: 19782633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of automated detection method of hemorrhages in fundus images.
    Hatanaka Y; Nakagawa T; Hayashi Y; Hara T; Fujita H
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5429-32. PubMed ID: 19163945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vessel extraction from non-fluorescein fundus images using orientation-aware detector.
    Yin B; Li H; Sheng B; Hou X; Chen Y; Wu W; Li P; Shen R; Bao Y; Jia W
    Med Image Anal; 2015 Dec; 26(1):232-42. PubMed ID: 26474120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vessel boundary delineation on fundus images using graph-based approach.
    Xu X; Niemeijer M; Song Q; Sonka M; Garvin MK; Reinhardt JM; Abràmoff MD
    IEEE Trans Med Imaging; 2011 Jun; 30(6):1184-91. PubMed ID: 21216707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An adaptive threshold based image processing technique for improved glaucoma detection and classification.
    Issac A; Partha Sarathi M; Dutta MK
    Comput Methods Programs Biomed; 2015 Nov; 122(2):229-44. PubMed ID: 26321351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Algorithms for digital image processing in diabetic retinopathy.
    Winder RJ; Morrow PJ; McRitchie IN; Bailie JR; Hart PM
    Comput Med Imaging Graph; 2009 Dec; 33(8):608-22. PubMed ID: 19616920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optic disk and cup segmentation from monocular color retinal images for glaucoma assessment.
    Joshi GD; Sivaswamy J; Krishnadas SR
    IEEE Trans Med Imaging; 2011 Jun; 30(6):1192-205. PubMed ID: 21536531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image.
    Singh A; Dutta MK; ParthaSarathi M; Uher V; Burget R
    Comput Methods Programs Biomed; 2016 Feb; 124():108-20. PubMed ID: 26574297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of neovascularization of the disc associated with proliferative diabetic retinopathy using OCT angiography.
    Akiyama H; Li D; Shimoda Y; Matsumoto H; Kishi S
    Jpn J Ophthalmol; 2018 May; 62(3):286-291. PubMed ID: 29460018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patch-based automatic retinal vessel segmentation in global and local structural context.
    Cao S; Bharath AA; Parker KH; Ng J
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4942-5. PubMed ID: 23367036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated segmentation of retinal blood vessels and identification of proliferative diabetic retinopathy.
    Jelinek HF; Cree MJ; Leandro JJ; Soares JV; Cesar RM; Luckie A
    J Opt Soc Am A Opt Image Sci Vis; 2007 May; 24(5):1448-56. PubMed ID: 17429492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.