These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23367050)

  • 21. Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system.
    Ayano S; Wakamoto Y; Yamashita S; Yasuda K
    Biochem Biophys Res Commun; 2006 Nov; 350(3):678-84. PubMed ID: 17027921
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A label-free cell separation using surface acoustic waves.
    Jo MC; Guldiken R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7691-4. PubMed ID: 22256120
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid additive-free bacteria lysis using traveling surface acoustic waves in microfluidic channels.
    Lu H; Mutafopulos K; Heyman JA; Spink P; Shen L; Wang C; Franke T; Weitz DA
    Lab Chip; 2019 Dec; 19(24):4064-4070. PubMed ID: 31690904
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accumulation of E. Coli bacteria in mini-channel flow.
    Mayeed MS; Mian A; Auner GW; Newaz GM
    J Biomech Eng; 2006 Jun; 128(3):458-61. PubMed ID: 16706596
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatial confinement of ultrasonic force fields in microfluidic channels.
    Manneberg O; Melker Hagsäter S; Svennebring J; Hertz HM; Kutter JP; Bruus H; Wiklund M
    Ultrasonics; 2009 Jan; 49(1):112-9. PubMed ID: 18701122
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interdigitated comb-like electrodes for continuous separation of malignant cells from blood using dielectrophoresis.
    Alazzam A; Stiharu I; Bhat R; Meguerditchian AN
    Electrophoresis; 2011 Jun; 32(11):1327-36. PubMed ID: 21500214
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultralow power trapping and fluorescence detection of single particles on an optofluidic chip.
    Kühn S; Phillips BS; Lunt EJ; Hawkins AR; Schmidt H
    Lab Chip; 2010 Jan; 10(2):189-94. PubMed ID: 20066246
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells.
    Wu Z; Willing B; Bjerketorp J; Jansson JK; Hjort K
    Lab Chip; 2009 May; 9(9):1193-9. PubMed ID: 19370236
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Standing surface acoustic wave (SSAW)-based microfluidic cytometer.
    Chen Y; Nawaz AA; Zhao Y; Huang PH; McCoy JP; Levine SJ; Wang L; Huang TJ
    Lab Chip; 2014 Mar; 14(5):916-23. PubMed ID: 24406848
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controlled rotation and translation of spherical particles or living cells by surface acoustic waves.
    Bernard I; Doinikov AA; Marmottant P; Rabaud D; Poulain C; Thibault P
    Lab Chip; 2017 Jul; 17(14):2470-2480. PubMed ID: 28617509
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reusable acoustic tweezers for disposable devices.
    Guo F; Xie Y; Li S; Lata J; Ren L; Mao Z; Ren B; Wu M; Ozcelik A; Huang TJ
    Lab Chip; 2015 Dec; 15(24):4517-23. PubMed ID: 26507411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Parallel multipoint recording of aligned and cultured neurons on corresponding Micro Channel Array toward on-chip cell analysis.
    Tonomura W; Moriguchi H; Jimbo Y; Konishi S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():943-6. PubMed ID: 19162813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MEMS impedance flow cytometry designs for effective manipulation of micro entities in health care applications.
    Kumar M; Yadav S; Kumar A; Sharma NN; Akhtar J; Singh K
    Biosens Bioelectron; 2019 Oct; 142():111526. PubMed ID: 31362203
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface acoustic wave actuated cell sorting (SAWACS).
    Franke T; Braunmüller S; Schmid L; Wixforth A; Weitz DA
    Lab Chip; 2010 Mar; 10(6):789-94. PubMed ID: 20221569
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A microfluidic device for label-free detection of Escherichia coli in drinking water using positive dielectrophoretic focusing, capturing, and impedance measurement.
    Kim M; Jung T; Kim Y; Lee C; Woo K; Seol JH; Yang S
    Biosens Bioelectron; 2015 Dec; 74():1011-5. PubMed ID: 26264268
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microparticle Manipulation by Standing Surface Acoustic Waves with Dual-frequency Excitations.
    Zhou Y; Sriphutkiat Y
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30199023
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A microfluidic platform for 3-dimensional cell culture and cell-based assays.
    Kim MS; Yeon JH; Park JK
    Biomed Microdevices; 2007 Feb; 9(1):25-34. PubMed ID: 17103048
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental and numerical studies on standing surface acoustic wave microfluidics.
    Mao Z; Xie Y; Guo F; Ren L; Huang PH; Chen Y; Rufo J; Costanzo F; Huang TJ
    Lab Chip; 2016 Feb; 16(3):515-24. PubMed ID: 26698361
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic integrated acoustic waving for manipulation of cells and molecules.
    Barani A; Paktinat H; Janmaleki M; Mohammadi A; Mosaddegh P; Fadaei-Tehrani A; Sanati-Nezhad A
    Biosens Bioelectron; 2016 Nov; 85():714-725. PubMed ID: 27262557
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optically transparent piezoelectric transducer for ultrasonic particle manipulation.
    Brodie GW; Qiu Y; Cochran S; Spalding GC; MacDonald MP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Mar; 61(3):389-91. PubMed ID: 24569243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.