These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 23367051)

  • 1. Detecting particles flowing through interdigitated 3D microelectrodes.
    Bianchi E; Rollo E; Kilchenmann S; Bellati FM; Accastelli E; Guiducci C
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5002-5. PubMed ID: 23367051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved detection limits of toxic biochemical species based on impedance measurements in electrochemical biosensors.
    Narakathu BB; Atashbar MZ; Bejcek BE
    Biosens Bioelectron; 2010 Oct; 26(2):923-8. PubMed ID: 20655726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impedance spectroscopy-based cell/particle position detection in microfluidic systems.
    Wang H; Sobahi N; Han A
    Lab Chip; 2017 Mar; 17(7):1264-1269. PubMed ID: 28267168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry.
    Wang L; Flanagan LA; Monuki E; Jeon NL; Lee AP
    Lab Chip; 2007 Sep; 7(9):1114-20. PubMed ID: 17713608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells.
    Mamouni J; Yang L
    Biomed Microdevices; 2011 Dec; 13(6):1075-88. PubMed ID: 21833766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optically induced flow cytometry for continuous microparticle counting and sorting.
    Lin YH; Lee GB
    Biosens Bioelectron; 2008 Dec; 24(4):572-8. PubMed ID: 18635347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoelectronic interface for lab-on-a-chip devices.
    Abraham JK; Yoon H; Chintakuntla R; Kavdia M; Varadan VK
    IET Nanobiotechnol; 2008 Sep; 2(3):55-61. PubMed ID: 19045838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A light sheet based high throughput 3D-imaging flow cytometer for phytoplankton analysis.
    Wu J; Li J; Chan RK
    Opt Express; 2013 Jun; 21(12):14474-80. PubMed ID: 23787635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High throughput particle analysis: combining dielectrophoretic particle focussing with confocal optical detection.
    Holmes D; Morgan H; Green NG
    Biosens Bioelectron; 2006 Feb; 21(8):1621-30. PubMed ID: 16332434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-speed particle detection in a micro-Coulter counter with two-dimensional adjustable aperture.
    Rodriguez-Trujillo R; Castillo-Fernandez O; Garrido M; Arundell M; Valencia A; Gomila G
    Biosens Bioelectron; 2008 Oct; 24(2):290-6. PubMed ID: 18511254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitive and rapid detection of pathogenic bacteria in small volumes using impedance spectroscopy technique.
    Pal N; Sharma S; Gupta S
    Biosens Bioelectron; 2016 Mar; 77():270-6. PubMed ID: 26414023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical impedance characterization of cell growth on interdigitated microelectrode array.
    Lee GH; Pyun JC; Cho S
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8342-6. PubMed ID: 25958525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate resistivity mouse brain mapping using microelectrode arrays.
    Béduer A; Joris P; Mosser S; Delattre V; Fraering PC; Renaud P
    Biosens Bioelectron; 2014 Oct; 60():143-53. PubMed ID: 24794406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid detection of viable microorganisms based on a plate count technique using arrayed microelectrodes.
    Bajwa A; Tan ST; Mehta R; Bahreyni B
    Sensors (Basel); 2013 Jun; 13(7):8188-98. PubMed ID: 23803788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplexing microelectrodes for dielectrophoretic manipulation and electrical impedance measurement of single particles and cells in a microfluidic device.
    Geng Y; Zhu Z; Wang Y; Wang Y; Ouyang S; Zheng K; Ye W; Fan Y; Wang Z; Pan D
    Electrophoresis; 2019 May; 40(10):1436-1445. PubMed ID: 30706494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lytic enzymes as selectivity means for label-free, microfluidic and impedimetric detection of whole-cell bacteria using ALD-Al2O3 passivated microelectrodes.
    Couniot N; Vanzieleghem T; Rasson J; Van Overstraeten-Schlögel N; Poncelet O; Mahillon J; Francis LA; Flandre D
    Biosens Bioelectron; 2015 May; 67():154-61. PubMed ID: 25149092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional focusing of red blood cells in microchannel flows for bio-sensing applications.
    Kim YW; Yoo JY
    Biosens Bioelectron; 2009 Aug; 24(12):3677-82. PubMed ID: 19559591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles.
    Yang D; Ai Y
    Lab Chip; 2019 Nov; 19(21):3609-3617. PubMed ID: 31517354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.