These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 23367057)
1. A system-on-chip and paper-based inkjet printed electrodes for a hybrid wearable bio-sensing system. Xie L; Yang G; Mäntysalo M; Jonsson F; Zheng LR Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5026-9. PubMed ID: 23367057 [TBL] [Abstract][Full Text] [Related]
2. A hybrid low power biopatch for body surface potential measurement. Yang G; Chen J; Xie L; Mao J; Tenhunen H; Zheng LR IEEE J Biomed Health Inform; 2013 May; 17(3):591-9. PubMed ID: 24592461 [TBL] [Abstract][Full Text] [Related]
3. Bio-patch design and implementation based on a low-power system-on-chip and paper-based inkjet printing technology. Yang G; Xie L; Mantysalo M; Chen J; Tenhunen H; Zheng LR IEEE Trans Inf Technol Biomed; 2012 Nov; 16(6):1043-50. PubMed ID: 22711780 [TBL] [Abstract][Full Text] [Related]
4. Conformal electronics for longitudinal bio-sensing in at-home assistive and rehabilitative devices. Batchelor JC; Yeates SG; Casson AJ Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3159-3162. PubMed ID: 28268978 [TBL] [Abstract][Full Text] [Related]
5. Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors. Sundriyal P; Bhattacharya S ACS Appl Mater Interfaces; 2017 Nov; 9(44):38507-38521. PubMed ID: 28991438 [TBL] [Abstract][Full Text] [Related]
6. Graphene derivative-based ink advances inkjet printing technology for fabrication of electrochemical sensors and biosensors. Nalepa MA; Panáček D; Dědek I; Jakubec P; Kupka V; Hrubý V; Petr M; Otyepka M Biosens Bioelectron; 2024 Jul; 256():116277. PubMed ID: 38613934 [TBL] [Abstract][Full Text] [Related]
7. Fabric-Based Wearable Dry Electrodes for Body Surface Biopotential Recording. Yokus MA; Jur JS IEEE Trans Biomed Eng; 2016 Feb; 63(2):423-30. PubMed ID: 26241969 [TBL] [Abstract][Full Text] [Related]
8. A Low-Cost Inkjet-Printed Aptamer-Based Electrochemical Biosensor for the Selective Detection of Lysozyme. Khan NI; Maddaus AG; Song E Biosensors (Basel); 2018 Jan; 8(1):. PubMed ID: 29342960 [TBL] [Abstract][Full Text] [Related]
9. All-Inkjet-Printed Flexible Nanobio-Devices with Efficient Electrochemical Coupling Using Amphiphilic Biomaterials. Kang TH; Lee SW; Hwang K; Shim W; Lee KY; Lim JA; Yu WR; Choi IS; Yi H ACS Appl Mater Interfaces; 2020 May; 12(21):24231-24241. PubMed ID: 32353230 [TBL] [Abstract][Full Text] [Related]
10. Wearable wireless telemetry system for implantable bio-MEMS sensors. Simons RN; Miranda FA; Wilson JD; Simons RE Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6245-8. PubMed ID: 17946365 [TBL] [Abstract][Full Text] [Related]
11. A compact inductive position sensor made by inkjet printing technology on a flexible substrate. Jeranče N; Vasiljević D; Samardžić N; Stojanović G Sensors (Basel); 2012; 12(2):1288-98. PubMed ID: 22438710 [TBL] [Abstract][Full Text] [Related]
13. Printed and flexible biosensor for antioxidants using interdigitated ink-jetted electrodes and gravure-deposited active layer. Pavinatto FJ; Paschoal CW; Arias AC Biosens Bioelectron; 2015 May; 67():553-9. PubMed ID: 25301685 [TBL] [Abstract][Full Text] [Related]
14. Chip-scale sensor system integration for portable health monitoring. Jokerst NM; Brooke MA; Cho SY; Shang AB Anesth Analg; 2007 Dec; 105(6 Suppl):S42-S47. PubMed ID: 18048897 [TBL] [Abstract][Full Text] [Related]
15. Design considerations on ultra-low-power wireless transmitters for wearable medical devices. Manstretta D Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3437-8. PubMed ID: 21097255 [TBL] [Abstract][Full Text] [Related]
16. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Kim J; Imani S; de Araujo WR; Warchall J; Valdés-Ramírez G; Paixão TR; Mercier PP; Wang J Biosens Bioelectron; 2015 Dec; 74():1061-8. PubMed ID: 26276541 [TBL] [Abstract][Full Text] [Related]
17. Versatile characterization of thiol-functionalized printed metal electrodes on flexible substrates for cheap diagnostic applications. Ihalainen P; Majumdar H; Määttänen A; Wang S; Österbacka R; Peltonen J Biochim Biophys Acta; 2013 Sep; 1830(9):4391-7. PubMed ID: 23000571 [TBL] [Abstract][Full Text] [Related]
19. High-resolution electrohydrodynamic jet printing. Park JU; Hardy M; Kang SJ; Barton K; Adair K; Mukhopadhyay DK; Lee CY; Strano MS; Alleyne AG; Georgiadis JG; Ferreira PM; Rogers JA Nat Mater; 2007 Oct; 6(10):782-9. PubMed ID: 17676047 [TBL] [Abstract][Full Text] [Related]
20. John Rogers and the Ultrathin Limits of Technology: His Flexible, Skin-Mounted Biostamp is Changing the Game for Wearable Diagnostic Devices. Chandler DL IEEE Pulse; 2016; 7(1):9-12. PubMed ID: 26799720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]