BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23367178)

  • 1. Investigation of the electric field components of tDCS via anisotropically conductive gyri-specific finite element head models.
    Metwally MK; Cho YS; Park HJ; Kim TS
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5514-7. PubMed ID: 23367178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of tissue anisotropy on the radial and tangential components of the electric field in transcranial direct current stimulation.
    Metwally MK; Han SM; Kim TS
    Med Biol Eng Comput; 2015 Oct; 53(10):1085-101. PubMed ID: 25940845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of anisotropic conductivity in the skull and white matter on transcranial direct current stimulation via an anatomically realistic finite element head model.
    Suh HS; Lee WH; Kim TS
    Phys Med Biol; 2012 Nov; 57(21):6961-80. PubMed ID: 23044667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcranial direct current stimulation in patients after decompressive craniectomy: a finite element model to investigate factors affecting the cortical electric field.
    Sun W; Dong X; Yu G; Shuai L; Yuan Y; Ma C
    J Int Med Res; 2021 Feb; 49(2):300060520942112. PubMed ID: 33788619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced spatial focality of electrical field in tDCS with ring electrodes due to tissue anisotropy.
    Suh HS; Lee WH; Cho YS; Kim JH; Kim TS
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2053-6. PubMed ID: 21096150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad.
    Datta A; Bansal V; Diaz J; Patel J; Reato D; Bikson M
    Brain Stimul; 2009 Oct; 2(4):201-7, 207.e1. PubMed ID: 20648973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution head model of transcranial direct current stimulation: A labeling analysis.
    Thomas C; Huang Y; Faria PC; Datta A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6442-6445. PubMed ID: 31947317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cost of focality in TDCS: Interindividual variability in electric fields.
    Mikkonen M; Laakso I; Tanaka S; Hirata A
    Brain Stimul; 2020; 13(1):117-124. PubMed ID: 31606449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of electric field distribution in anisotropic cortical and subcortical regions under the influence of tDCS.
    Shahid S; Wen P; Ahfock T
    Bioelectromagnetics; 2014 Jan; 35(1):41-57. PubMed ID: 24122951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical investigation of white matter anisotropic conductivity in defining current distribution under tDCS.
    Shahid S; Wen P; Ahfock T
    Comput Methods Programs Biomed; 2013 Jan; 109(1):48-64. PubMed ID: 23040278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of tDCS volume conduction effects in a highly realistic head model.
    Wagner S; Rampersad SM; Aydin Ü; Vorwerk J; Oostendorp TF; Neuling T; Herrmann CS; Stegeman DF; Wolters CH
    J Neural Eng; 2014 Feb; 11(1):016002. PubMed ID: 24310982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of Computational Modeling to Inform tDCS Electrode Montages for the Promotion of Language Recovery in Post-stroke Aphasia.
    Galletta EE; Cancelli A; Cottone C; Simonelli I; Tecchio F; Bikson M; Marangolo P
    Brain Stimul; 2015; 8(6):1108-15. PubMed ID: 26198364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Realistic simulation of transcranial direct current stimulation via 3-d high-resolution finite element analysis: Effect of tissue anisotropy.
    Suh HS; Kim SH; Lee WH; Kim TS
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():638-41. PubMed ID: 19964234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How does the electric field induced by tDCS influence motor-related connectivity? Model-guided perspectives.
    Fernandes SR; Callejón-Leblic MA; Ferreira HA
    Phys Med Biol; 2024 Feb; 69(5):. PubMed ID: 38266295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of NIRS Probe Based on Computational Model to Find Out the Optimal Location for Non-Invasive Brain Stimulation.
    Sharma G; Roy Chowdhury S
    J Med Syst; 2018 Oct; 42(12):244. PubMed ID: 30374669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the cortical regions involved in MEP modulation in tDCS.
    Salvador R; Wenger C; Miranda PC
    Front Cell Neurosci; 2015; 9():405. PubMed ID: 26528134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Computational Analysis of the Electric Field Components in Transcranial Direct Current Stimulation.
    Callejon-Leblic MA; Miranda PC
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5913-5917. PubMed ID: 31947195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling transcranial DC stimulation.
    Oostendorp TF; Hengeveld YA; Wolters CH; Stinstra J; van Elswijk G; Stegeman DF
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4226-9. PubMed ID: 19163645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of montages and electric currents in tDCS.
    Khorrampanah M; Seyedarabi H; Daneshvar S; Farhoudi M
    Comput Biol Med; 2020 Oct; 125():103998. PubMed ID: 33039799
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.