BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 23367192)

  • 1. Individualized performance prediction during total sleep deprivation: accounting for trait vulnerability to sleep loss.
    Ramakrishnan S; Laxminarayan S; Thorsley D; Wesensten NJ; Balkin TJ; Reifman J
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5574-7. PubMed ID: 23367192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of biomathematical model predictions for cognitive performance impairment in individuals: accounting for unknown traits and uncertain states in homeostatic and circadian processes.
    Van Dongen HP; Mott CG; Huang JK; Mollicone DJ; McKenzie FD; Dinges DF
    Sleep; 2007 Sep; 30(9):1129-43. PubMed ID: 17910385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individualized performance prediction of sleep-deprived individuals with the two-process model.
    Rajaraman S; Gribok AV; Wesensten NJ; Balkin TJ; Reifman J
    J Appl Physiol (1985); 2008 Feb; 104(2):459-68. PubMed ID: 18079260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can a mathematical model predict an individual's trait-like response to both total and partial sleep loss?
    Ramakrishnan S; Lu W; Laxminarayan S; Wesensten NJ; Rupp TL; Balkin TJ; Reifman J
    J Sleep Res; 2015 Jun; 24(3):262-9. PubMed ID: 25559055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2B-Alert App: A mobile application for real-time individualized prediction of alertness.
    Reifman J; Ramakrishnan S; Liu J; Kapela A; Doty TJ; Balkin TJ; Kumar K; Khitrov MY
    J Sleep Res; 2019 Apr; 28(2):e12725. PubMed ID: 30033688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved methodology for individualized performance prediction of sleep-deprived individuals with the two-process model.
    Rajaraman S; Gribok AV; Wesensten NJ; Balkin TJ; Reifman J
    Sleep; 2009 Oct; 32(10):1377-92. PubMed ID: 19848366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time individualization of the unified model of performance.
    Liu J; Ramakrishnan S; Laxminarayan S; Balkin TJ; Reifman J
    J Sleep Res; 2017 Dec; 26(6):820-831. PubMed ID: 28436072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Individual differences in vulnerability to sleep loss in the work environment.
    Van Dongen HP; Belenky G
    Ind Health; 2009 Oct; 47(5):518-26. PubMed ID: 19834261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Unified Model of Performance for Predicting the Effects of Sleep and Caffeine.
    Ramakrishnan S; Wesensten NJ; Kamimori GH; Moon JE; Balkin TJ; Reifman J
    Sleep; 2016 Oct; 39(10):1827-1841. PubMed ID: 27397562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ensemble mixed effects model of sleep loss and performance.
    Cochrane C; Ba D; Klerman EB; St Hilaire MA
    J Theor Biol; 2021 Jan; 509():110497. PubMed ID: 32966825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unified mathematical model to quantify performance impairment for both chronic sleep restriction and total sleep deprivation.
    Rajdev P; Thorsley D; Rajaraman S; Rupp TL; Wesensten NJ; Balkin TJ; Reifman J
    J Theor Biol; 2013 Aug; 331():66-77. PubMed ID: 23623949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Psychomotor vigilance task performance during and following chronic sleep restriction in rats.
    Deurveilher S; Bush JE; Rusak B; Eskes GA; Semba K
    Sleep; 2015 Apr; 38(4):515-28. PubMed ID: 25515100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Unified Model of Performance: Validation of its Predictions across Different Sleep/Wake Schedules.
    Ramakrishnan S; Wesensten NJ; Balkin TJ; Reifman J
    Sleep; 2016 Jan; 39(1):249-62. PubMed ID: 26518594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ability to self-monitor cognitive performance during 60 h total sleep deprivation and following 2 nights recovery sleep.
    Boardman JM; Bei B; Mellor A; Anderson C; Sletten TL; Drummond SPA
    J Sleep Res; 2018 Aug; 27(4):e12633. PubMed ID: 29159907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cognitive throughput and working memory raw scores consistently differentiate resilient and vulnerable groups to sleep loss.
    Brieva TE; Casale CE; Yamazaki EM; Antler CA; Goel N
    Sleep; 2021 Dec; 44(12):. PubMed ID: 34333658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dose-dependent model of caffeine effects on human vigilance during total sleep deprivation.
    Ramakrishnan S; Laxminarayan S; Wesensten NJ; Kamimori GH; Balkin TJ; Reifman J
    J Theor Biol; 2014 Oct; 358():11-24. PubMed ID: 24859426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation.
    Yeo BT; Tandi J; Chee MW
    Neuroimage; 2015 May; 111():147-58. PubMed ID: 25700949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sleep, circadian rhythms, and psychomotor vigilance.
    Van Dongen HP; Dinges DF
    Clin Sports Med; 2005 Apr; 24(2):237-49, vii-viii. PubMed ID: 15892921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cognitive impairments by alcohol and sleep deprivation indicate trait characteristics and a potential role for adenosine A
    Elmenhorst EM; Elmenhorst D; Benderoth S; Kroll T; Bauer A; Aeschbach D
    Proc Natl Acad Sci U S A; 2018 Jul; 115(31):8009-8014. PubMed ID: 30012607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interindividual variability in neurobehavioral response to sleep loss: A comprehensive review.
    Tkachenko O; Dinges DF
    Neurosci Biobehav Rev; 2018 Jun; 89():29-48. PubMed ID: 29563066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.