These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 23367202)

  • 1. Frequency dependent transmission characteristics between arterial blood pressure and intracranial pressure in rats.
    Kim MO; Li J; Qasem A; Graham SL; Avolio AP
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5614-7. PubMed ID: 23367202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impaired pulsation absorber mechanism in idiopathic normal pressure hydrocephalus: laboratory investigation.
    Park EH; Eide PK; Zurakowski D; Madsen JR
    J Neurosurg; 2012 Dec; 117(6):1189-96. PubMed ID: 23061391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations of pulsation absorber characteristics in experimental hydrocephalus.
    Park EH; Dombrowski S; Luciano M; Zurakowski D; Madsen JR
    J Neurosurg Pediatr; 2010 Aug; 6(2):159-70. PubMed ID: 20672938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracranial pressure waves: characterization of a pulsation absorber with notch filter properties using systems analysis: laboratory investigation.
    Zou R; Park EH; Kelly EM; Egnor M; Wagshul ME; Madsen JR
    J Neurosurg Pediatr; 2008 Jul; 2(1):83-94. PubMed ID: 18590402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonant and notch behavior in intracranial pressure dynamics.
    Wagshul ME; Kelly EJ; Yu HJ; Garlick B; Zimmerman T; Egnor MR
    J Neurosurg Pediatr; 2009 May; 3(5):354-64. PubMed ID: 19409013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quantitative model of the cerebral windkessel and its relevance to disorders of intracranial dynamics.
    Egnor M; Yang L; Mani RM; Fiore SM; Djurić PM
    J Neurosurg Pediatr; 2023 Sep; 32(3):302-311. PubMed ID: 37382303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Waveform caused by raised intracranial pressure--application of spectral analysis in the study of waveform].
    Takizawa H
    No To Shinkei; 1987 Feb; 39(2):135-42. PubMed ID: 3828148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms behind altered pulsatile intracranial pressure in idiopathic normal pressure hydrocephalus: role of vascular pulsatility and systemic hemodynamic variables.
    Evensen KB; Eide PK
    Acta Neurochir (Wien); 2020 Aug; 162(8):1803-1813. PubMed ID: 32533412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer Function Between Intracranial Pressure and Aortic Blood Pressure and Carotid Blood Flow.
    Lara-Hetnandez JA; Kim MO; Avolio AP; Butlin M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3169-3172. PubMed ID: 30441067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-shift between arterial flow and ICP pulse during infusion test.
    Kim DJ; Czosnyka M; Kim H; Balédent O; Smielewski P; Garnett MR; Czosnyka Z
    Acta Neurochir (Wien); 2015 Apr; 157(4):633-8. PubMed ID: 25646851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel method for dynamic control of intracranial pressure.
    Luciano MG; Dombrowski SM; Qvarlander S; El-Khoury S; Yang J; Thyagaraj S; Loth F
    J Neurosurg; 2017 May; 126(5):1629-1640. PubMed ID: 27419825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New understanding of the role of cerebrospinal fluid: offsetting of arterial and brain pulsation and self-dissipation of cerebrospinal fluid pulsatile flow energy.
    Min KJ; Yoon SH; Kang JK
    Med Hypotheses; 2011 Jun; 76(6):884-6. PubMed ID: 21458167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracranial Pressure Waveforms are More Closely Related to Central Aortic than Radial Pressure Waveforms: Implications for Pathophysiology and Therapy.
    Kim MO; Eide PK; O'Rourke MF; Adji A; Avolio AP
    Acta Neurochir Suppl; 2016; 122():61-4. PubMed ID: 27165878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of systemic and cerebral vascular factors on the cerebrospinal fluid pulse waves.
    Hamer J; Alberti E; Hoyer S; Wiedemann K
    J Neurosurg; 1977 Jan; 46(1):36-45. PubMed ID: 830813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of intracerebroventricular versus intravenous administration of vasopressin on intracranial pressure in the rat.
    Saladin LK; Bruni JE
    Neurol Res; 1993 Jun; 15(3):198-203. PubMed ID: 8103586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebrospinal fluid pulse pressure and the pulsatile variation in cerebral blood volume: an experimental study in dogs.
    van Eijndhoven JH; Avezaat CJ
    Neurosurgery; 1986 Oct; 19(4):507-22. PubMed ID: 3097566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracranial pressure waveform analysis: computation of pressure transmission and waveform shape indicators.
    Dubin MJ; Magram G; Prasad AK
    Neurol Res; 1998 Sep; 20(6):533-41. PubMed ID: 9713845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebrospinal fluid pulse waveform as an indicator of cerebral autoregulation.
    Portnoy HD; Chopp M; Branch C; Shannon MB
    J Neurosurg; 1982 May; 56(5):666-78. PubMed ID: 7069479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Intracranial pressure pulse waveform: considerations about its origin and methods of estimating intracranial pressure dynamics].
    Hirai O; Handa H; Ishikawa M
    No To Shinkei; 1982 Nov; 34(11):1059-65. PubMed ID: 7159538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is ventriculomegaly in idiopathic normal pressure hydrocephalus associated with a transmantle gradient in pulsatile intracranial pressure?
    Eide PK; Saehle T
    Acta Neurochir (Wien); 2010 Jun; 152(6):989-95. PubMed ID: 20130957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.