These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 23367249)

  • 21. A Sensitive and Biodegradable Pressure Sensor Array for Cardiovascular Monitoring.
    Boutry CM; Nguyen A; Lawal QO; Chortos A; Rondeau-Gagné S; Bao Z
    Adv Mater; 2015 Nov; 27(43):6954-61. PubMed ID: 26418964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In-Home Cardiovascular Monitoring System for Heart Failure: Comparative Study.
    Conn NJ; Schwarz KQ; Borkholder DA
    JMIR Mhealth Uhealth; 2019 Jan; 7(1):e12419. PubMed ID: 30664492
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Piezoelectric sensor determination of arterial pulse wave velocity.
    McLaughlin J; McNeill M; Braun B; McCormack PD
    Physiol Meas; 2003 Aug; 24(3):693-702. PubMed ID: 14509307
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel smart clothing with dry electrode biosensor for real-time automatic diagnosis of cardiovascular diseases.
    Park EB; Heo JC; Lee JH
    Biomed Mater Eng; 2018; 29(5):587-599. PubMed ID: 30400073
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Smart Vest: wearable multi-parameter remote physiological monitoring system.
    Pandian PS; Mohanavelu K; Safeer KP; Kotresh TM; Shakunthala DT; Gopal P; Padaki VC
    Med Eng Phys; 2008 May; 30(4):466-77. PubMed ID: 17869159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Analysis of Pulse Rate Variability and Its Application to Wearable Smart Devices].
    Shi B; Chen F; Chen J; Tsau Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2015 Mar; 39(2):95-7. PubMed ID: 26204736
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison between pulse wave velocities measured using Complior and measured using Biopac.
    van Velzen MHN; Stolker RJ; Loeve AJ; Niehof SP; Mik EG
    J Clin Monit Comput; 2019 Apr; 33(2):241-247. PubMed ID: 29876710
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cuff-less Blood Pressure Measurement Using Supplementary ECG and PPG Features Extracted Through Wavelet Transformation.
    Singla M; Sistla P; Azeemuddin S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4628-4631. PubMed ID: 31946895
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-Site Photoplethysmographic and Electrocardiographic System for Arterial Stiffness and Cardiovascular Status Assessment.
    Perpetuini D; Chiarelli AM; Maddiona L; Rinella S; Bianco F; Bucciarelli V; Gallina S; Perciavalle V; Vinciguerra V; Merla A; Fallica G
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31861123
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regional assessment of carotid artery pulse wave velocity using compressed sensing accelerated high temporal resolution 2D CINE phase contrast cardiovascular magnetic resonance.
    Peper ES; Strijkers GJ; Gazzola K; Potters WV; Motaal AG; Luirink IK; Hutten BA; Wiegman A; van Ooij P; van den Born BH; Nederveen AJ; Coolen BF
    J Cardiovasc Magn Reson; 2018 Dec; 20(1):86. PubMed ID: 30567566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring.
    Imani S; Bandodkar AJ; Mohan AM; Kumar R; Yu S; Wang J; Mercier PP
    Nat Commun; 2016 May; 7():11650. PubMed ID: 27212140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Six-channel ECG-based pulse wave velocity for assessing whole-body arterial stiffness.
    Wu HT; Hsu PC; Liu AB; Chen ZL; Huang RM; Chen CP; Tang CJ; Sun CK
    Blood Press; 2012 Jun; 21(3):167-76. PubMed ID: 22519467
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Serial changes of pulse wave velocity and correlations with hemodynamic parameters during general anesthesia.
    Chen YT; Chiayg CY; Wang MC; Tsai WC; Wu HT; Liu CC
    Acta Anaesthesiol Taiwan; 2006 Dec; 44(4):193-8. PubMed ID: 17233362
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluating the Sensoria Smart Socks Gait Monitoring System for Rehabilitation Outcomes.
    Yeung J; Catolico D; Fullmer N; Daniel R; Lovell R; Tang R; Pearson EM; Rosenberg SS
    PM R; 2019 May; 11(5):512-521. PubMed ID: 30861329
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Artifacts in pulse transit time measurements using standard patient monitoring equipment.
    Bennis FC; van Pul C; van den Bogaart JJL; Andriessen P; Kramer BW; Delhaas T
    PLoS One; 2019; 14(6):e0218784. PubMed ID: 31226142
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A simplified measurement of pulse wave velocity is not inferior to standard measurement in young adults and children.
    Edgell H; Stickland MK; MacLean JE
    Blood Press Monit; 2016 Jun; 21(3):192-5. PubMed ID: 26905286
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiobjective optimization-based design of wearable electrocardiogram monitoring systems.
    Martinez-Tabares FJ; Jaramillo-Garzón JA; Castellanos-Dominguez G
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3029-32. PubMed ID: 25570629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing the estimation of blood pressure using pulse arrival time and two confounding factors.
    Baek HJ; Kim KK; Kim JS; Lee B; Park KS
    Physiol Meas; 2010 Feb; 31(2):145-57. PubMed ID: 20009186
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a wearable system integrated with novel biomedical sensors for ubiquitous healthcare.
    Hung K; Lee CC; Chan WM; Choy SO; Kwok P
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5802-5. PubMed ID: 23367248
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microcomputer-based monitoring of cardiovascular functions in simulated microgravity.
    Tahvanainen K; Länsimies E; Tikkanen P; Hartikainen J; Kärki T; Lyyra T; Mäntysaari M
    Adv Space Res; 1992; 12(1):227-36. PubMed ID: 11536961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.