These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 2336725)
1. [The effect of starvation during an early postnatal period on carbohydrate metabolism in the swine brain]. Snityns'kyĭ VV Ukr Biokhim Zh (1978); 1990; 62(1):55-9. PubMed ID: 2336725 [TBL] [Abstract][Full Text] [Related]
2. [Intensity of pentose phosphate metabolism of carbohydrates in various brain areas in normal and starved animals]. Kerimov BF Vopr Med Khim; 2002; 48(5):490-6. PubMed ID: 12498092 [TBL] [Abstract][Full Text] [Related]
3. [The enzyme activity of carbohydrate metabolism in the liver of swine during the transition from prenatal to postnatal development]. Snitinskiĭ VV Zh Evol Biokhim Fiziol; 1988; 24(5):702-7. PubMed ID: 3064498 [TBL] [Abstract][Full Text] [Related]
4. [Carbohydrate and lipid metabolism in swine skeletal muscle in the pre- and neonatal periods]. Snitinskiĭ VV Zh Evol Biokhim Fiziol; 1991; 27(2):176-81. PubMed ID: 1927152 [TBL] [Abstract][Full Text] [Related]
5. [Effect of insulin and cortisol on oxidation of (1-14C)glucose, (6-14C)glucose, (1-14C)palmitate and (1-14C)leucine in the tissues of swine during the neonatal period]. Snitinskiĭ VV; Vovk SI; Ianovich VG Ukr Biokhim Zh (1978); 1984; 56(2):162-6. PubMed ID: 6372181 [TBL] [Abstract][Full Text] [Related]
6. The influence of thyroxine on intensity of energy metabolism in bone marrow myeloid cells and neutrophilic polymorphonuclear leukocytes of neonatal pig. Babych H; Antonyak H; Sklyarov AY Endocr Regul; 2000 Jun; 34(2):73-81. PubMed ID: 10911408 [TBL] [Abstract][Full Text] [Related]
7. Effect of diet composition and ration size on key enzyme activities of glycolysis-gluconeogenesis, the pentose phosphate pathway and amino acid metabolism in liver of gilthead sea bream (Sparus aurata). Metón I; Mediavilla D; Caseras A; Cantó E; Fernández F; Baanante IV Br J Nutr; 1999 Sep; 82(3):223-32. PubMed ID: 10655969 [TBL] [Abstract][Full Text] [Related]
8. Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans. Rauch B; Pahlke J; Schweiger P; Deppenmeier U Appl Microbiol Biotechnol; 2010 Oct; 88(3):711-8. PubMed ID: 20676631 [TBL] [Abstract][Full Text] [Related]
9. [Oxidation in vivo of glucose, palmitate, alanine and leucine in the pig during the neonatal period]. Snitinskiĭ VV; Ianovich VG; Vovk SI Ukr Biokhim Zh (1978); 1985; 57(2):90-2. PubMed ID: 4002373 [TBL] [Abstract][Full Text] [Related]
10. Energy metabolism and substrate oxidation in pigs during feeding, starvation and re-feeding. Chwalibog A; Tauson AH; Thorbek G J Anim Physiol Anim Nutr (Berl); 2004 Apr; 88(3-4):101-12. PubMed ID: 15059233 [TBL] [Abstract][Full Text] [Related]
11. [Characteristics of some stages of energy metabolism and antioxidant system in bone marrow myeloid cells and leukocytes from piglets]. Antoniak HL; Snityns'kyĭ VV; Babych NO; Iskra RIa; Buchko OM Ukr Biokhim Zh (1999); 1999; 71(3):44-50. PubMed ID: 10609322 [TBL] [Abstract][Full Text] [Related]
12. [In vivo protein synthesis from 14C-substrates in porcine tissues during the transition to postnatal development]. Snitinskiĭ VV Zh Evol Biokhim Fiziol; 1989; 25(5):583-8. PubMed ID: 2596216 [TBL] [Abstract][Full Text] [Related]
13. [Changes in the activity of various enzymes of carbohydrate metabolism in the liver and skeletal muscles of pigs during ontogenesis]. Snitinskiĭ VV; Ianovich VG Ukr Biokhim Zh (1978); 1981; 53(6):45-9. PubMed ID: 6459666 [TBL] [Abstract][Full Text] [Related]
14. Modulation of glycolysis and the pentose phosphate pathway influences porcine oocyte in vitro maturation. Alvarez GM; Ferretti EL; Gutnisky C; Dalvit GC; Cetica PD Reprod Domest Anim; 2013 Aug; 48(4):545-53. PubMed ID: 23189959 [TBL] [Abstract][Full Text] [Related]
15. Energy reserves and utilization rates in developing brain measured in vivo by 31P and 1H nuclear magnetic resonance spectroscopy. Corbett RJ; Laptook AR; Garcia D; Ruley JI J Cereb Blood Flow Metab; 1993 Mar; 13(2):235-46. PubMed ID: 8436615 [TBL] [Abstract][Full Text] [Related]
16. Utilization of dietary amino acids for energy production in neonatal rat liver. White PK; Miller SA Pediatr Res; 1976 Mar; 10(3):158-64. PubMed ID: 1250645 [TBL] [Abstract][Full Text] [Related]
17. Glycolytic, glutaminolytic and pentose-phosphate pathways in promyelocytic HL60 and DMSO-differentiated HL60 cells. Ahmed N; Williams JF; Weidemann MJ Biochem Mol Biol Int; 1993 Apr; 29(6):1055-67. PubMed ID: 8330014 [TBL] [Abstract][Full Text] [Related]
18. [Effect of human milk enzymes on carbohydrate metabolism during adaptation of newborn infants in the early neonatal period]. Nabukhotnyĭ TK; Markevich VE; Pavliuk VP; Tkachenko IuP Vopr Pitan; 1988; (3):34-8. PubMed ID: 3206853 [TBL] [Abstract][Full Text] [Related]
19. [The age-related changes in the antioxidant system enzymes of the erythroid cells of swine at the early stages of postnatal development]. Snityns'kyĭ VV; Antoniak HL; Bershads'kyĭ VI Fiziol Zh (1994); 1996; 42(5-6):19-25. PubMed ID: 9044806 [TBL] [Abstract][Full Text] [Related]
20. [Age-specific changes of carbohydrate metabolism in rat liver in immobilization stress]. Davydov VV; Zakharchenko IV; Ovsiannikov VG Patol Fiziol Eksp Ter; 2005; (1):12-4. PubMed ID: 15801231 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]